Gabrion J B, Herbuté S, Bouillé C, Maurel D, Kuchler-Bopp S, Laabich A, Delaunoy J P
UMR CNRS 5539, Université Montpellier 2, France.
Microsc Res Tech. 1998 Apr 15;41(2):124-57. doi: 10.1002/(SICI)1097-0029(19980415)41:2<124::AID-JEMT3>3.0.CO;2-U.
During the past 10 years, our teams developed long-term primary cultures of ependymal cells derived from ventricular walls of telencephalon and hypothalamus or choroidal cells (modified ependymal cells) derived from plexuses dissected out of fetal or newborn mouse or rat brains. Cultures were established in serum-supplemented or chemically defined media after seeding on serum-, fibronectin-, or collagen-laminin-coated plastic dishes or semipermeable inserts. To identify and characterize cell types growing in our cultures, we used morphological features provided by phase contrast, scanning, and transmission electron microscopy. We used antibodies against intermediate filament proteins (vimentin, glial fibrillary acidic protein, cytokeratin, desmin, neurofilament proteins), actin, myosin, ciliary rootlets, laminin, and fibronectin in single or double immunostaining, and monoclonal antibodies against epitopes of ependymal or endothelial cells, to recognize ventricular wall cell types with immunological criteria. Ciliated or nonciliated ependymal cells in telencephalic cultures, tanycytes and ciliated and nonciliated ependymal cells in hypothalamic cultures always exceeded 75% of the cultured cells under the conditions used. These cells were characterized by their cell shape and epithelial organization, by their apical differentiations observed by scanning and transmission electron microscopy, and by specific markers (e.g., glial fibrillary acidic protein, ciliary rootlet proteins, DARPP 32) detected by immunofluorescence. All these cultured ependymal cell types remarkably resembled in vivo ependymocytes in terms of molecular markers and ultrastructural features. Choroidal cells were also maintained for several weeks in culture, and abundantly expressed markers were detected in both choroidal tissue and culture (Na+-K+-dependent ATPase, DARPP 32, G proteins, ANP receptors). In this review, the culture models we developed (defined in terms of biological material, media, substrates, duration, and subculturing) are also compared with those developed by other investigators during the last 10 years. Focusing on morphological and functional approaches, we have shown that these culture models were suitable to investigate and provide new insights on (1) the gap junctional communication of ependymal, choroidal, and astroglial cells in long-term primary cultures by freeze-fracture or dye transfer of Lucifer Yellow CH after intracellular microinjection; (2) some ionic channels; (3) the hormone receptors to tri-iodothyronine or atrial natriuretic peptides; (4) the regulatory effect of tri-iodothyronine on glutamine synthetase expression; (5) the endocytosis and transcytosis of proteins; and (6) the morphogenetic effects of galactosyl-ceramide. We also discuss new insights provided by recent results reported on in vitro ependymal and choroidal expressions of neuropeptide-processing enzymes and neurosecretory proteins or choroidal expression of transferrin regulated through serotoninergic activation.
在过去10年中,我们的团队建立了源自端脑和下丘脑室壁的室管膜细胞或源自从胎鼠或新生鼠脑部分离出的丛状结构的脉络丛细胞(改良的室管膜细胞)的长期原代培养物。在接种到涂有血清、纤连蛋白或胶原-层粘连蛋白的塑料培养皿或半透膜插入物上后,在补充血清或化学成分明确的培养基中建立培养物。为了鉴定和表征培养物中生长的细胞类型,我们使用了相差显微镜、扫描电子显微镜和透射电子显微镜提供的形态学特征。我们在单重或双重免疫染色中使用了针对中间丝蛋白(波形蛋白、胶质纤维酸性蛋白、细胞角蛋白、结蛋白、神经丝蛋白)、肌动蛋白、肌球蛋白、纤毛小根、层粘连蛋白和纤连蛋白的抗体,以及针对室管膜或内皮细胞表位的单克隆抗体,以通过免疫学标准识别室壁细胞类型。在所使用的条件下,端脑培养物中的纤毛或非纤毛室管膜细胞、下丘脑培养物中的伸长细胞以及纤毛和非纤毛室管膜细胞始终超过培养细胞的75%。这些细胞通过其细胞形状和上皮组织、通过扫描和透射电子显微镜观察到的顶端分化以及通过免疫荧光检测到的特异性标志物(例如,胶质纤维酸性蛋白、纤毛小根蛋白、DARPP 32)来表征。就分子标志物和超微结构特征而言,所有这些培养的室管膜细胞类型与体内室管膜细胞非常相似。脉络丛细胞也在培养中维持了数周,并且在脉络丛组织和培养物中都检测到大量表达的标志物(钠钾依赖性ATP酶、DARPP 32、G蛋白、心钠素受体)。在这篇综述中,我们还将我们开发的培养模型(根据生物材料、培养基、底物、持续时间和传代培养来定义)与其他研究人员在过去10年中开发的模型进行了比较。聚焦于形态学和功能方法,我们已经表明这些培养模型适合于研究并提供关于以下方面的新见解:(1) 通过冷冻断裂或细胞内微注射后鲁米诺黄CH的染料转移,研究长期原代培养物中室管膜、脉络丛和星形胶质细胞的缝隙连接通讯;(2) 一些离子通道;(III) 三碘甲状腺原氨酸或心钠素的激素受体;(4) 三碘甲状腺原氨酸对谷氨酰胺合成酶表达的调节作用;(5) 蛋白质的内吞作用和转胞吞作用;以及(6) 半乳糖基神经酰胺的形态发生作用。我们还讨论了最近报道的关于神经肽加工酶和神经分泌蛋白的体外室管膜和脉络丛表达或通过血清素能激活调节的转铁蛋白的脉络丛表达的新见解。