Suppr超能文献

[树突、神经元与模拟模型]

[Dendrites, neurons and simulation models].

作者信息

Wünsch Z

机构信息

Fyziologický ústav 1. LF UK, Praha.

出版信息

Cas Lek Cesk. 1998 Mar 9;137(5):131-6.

PMID:9588095
Abstract

The dendritic tree, this morphologically remarkably structured and typically diversified portion of the neuron reveals gradually its till recently little known complex functional possibilities. The size of the dendritic membrane participates in the latter similarly as their morphological pattern and their electronic structure which has a marked effect also due to its passive cable properties on the spread and interaction of potential changes on the membrane. Moreover the presence of a complex, differentiated mosaic of ion channels of different types provides dendrites with non-linearities with a wide scope of dynamic phenomena and active properties. The dendritic membrane can e.g. actively reinforce signals proceeding along the thin dendrite fibres and may make the development of action potentials or their retrograde movement from the membrane of the cell body possible. The possible operations above the spatial and temporal structures of signals equipped by differently located excitation and inhibition synapses are enriched by the action of ions entering via ion channels into the cell when the membrane potential changes. Manifestations of neuroplasticity lend these properties further temporal and functional dimensions. The neuron is no longer a one-way polarized and passive transmitter of synaptic input signals four output action potentials; it is a complicated non-linear hierarchic dynamic system with possible complex temporal and spatial analogue signal transformations in dendritic structures. New findings are the result of the cooperative use of empirical and theoretical procedures based on the morphophysiological methods with a high differentiating capacity and the methodology of studies of dynamic systems and computer simulation.

摘要

树突分支,即神经元形态上结构显著且通常多样化的部分,逐渐展现出其直至最近仍鲜为人知的复杂功能可能性。树突膜的大小、形态模式以及电子结构都同样参与其中,其电子结构因其被动电缆特性,对膜上电位变化的传播和相互作用也有显著影响。此外,不同类型离子通道组成的复杂、分化的镶嵌结构赋予树突非线性特性,从而产生广泛的动态现象和主动特性。例如,树突膜可以主动增强沿细树突纤维传导的信号,并可能使动作电位的产生或从细胞体膜的逆行移动成为可能。当膜电位变化时,通过离子通道进入细胞的离子作用,丰富了由不同位置的兴奋和抑制性突触所装备的信号在空间和时间结构上的可能操作。神经可塑性的表现为这些特性赋予了更多的时间和功能维度。神经元不再是一个单向极化且被动传递突触输入信号以输出动作电位的结构;它是一个复杂的非线性层次动态系统,在树突结构中可能进行复杂的时空模拟信号转换。新发现是基于具有高分辨能力的形态生理学方法与动态系统研究方法和计算机模拟协同使用经验性和理论性程序的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验