Suppr超能文献

离子通道中的异常摩尔分数效应、静电作用与结合

Anomalous mole fraction effect, electrostatics, and binding in ionic channels.

作者信息

Nonner W, Chen D P, Eisenberg B

机构信息

Department of Physiology and Biophysics, University of Miami School of Medicine, Florida 33101-4819, USA.

出版信息

Biophys J. 1998 May;74(5):2327-34. doi: 10.1016/S0006-3495(98)77942-1.

Abstract

Ionic channels bathed in mixed solutions of two permeant electrolytes often conduct less current than channels bathed in pure solutions of either. For many years, this anomalous mole fraction effect (AMFE) has been thought to occur only in single-file pores containing two or more ions at a time. Most thinking about channels incorporates this view. We show here that the AMFE arises naturally, as an electrostatic consequence of localized ion specific binding, if the average current through a channel is described by a theory (Poisson-Nernst-Planck, PNP) that computes the average electric field from the average concentration of charges in and near the channel. The theory contains only those ion-ion interactions mediated by the mean field, and it does not enforce single filing. The AMFE is predicted by PNP over a wide range of mean concentrations of ions in the channel; for example, it is predicted when (on the average) less, or much less, than one ion is found in the channel's pore. In this treatment, the AMFE arises, in large measure, from a depletion layer produced near a region of ion-specific binding. The small excess concentration of ions in the binding region repels all nearby ions of like charge, thereby creating a depletion layer. The overall conductance of the channel arises in effect from resistors in series, one from the binding region, one from the depletion zone, and one from the unbinding region. The highest value resistor (which occurs in the depletion zone) limits the overall series conductance. Here the AMFE is not the result of single filing or multiple occupancy, and so previous views of permeation need to be revised: the presence of an AMFE does not imply that ions permeate single file through a multiply occupied pore.

摘要

浸泡在两种可渗透电解质混合溶液中的离子通道,其传导的电流通常比浸泡在任何一种纯溶液中的通道传导的电流要少。多年来,人们一直认为这种异常摩尔分数效应(AMFE)仅发生在每次含有两个或更多离子的单排孔中。大多数关于通道的观点都包含了这一观点。我们在此表明,如果通过通道的平均电流由一种理论(泊松 - 能斯特 - 普朗克,PNP)来描述,该理论根据通道内及附近电荷的平均浓度计算平均电场,那么AMFE会作为局部离子特异性结合的静电结果自然出现。该理论仅包含由平均场介导的离子 - 离子相互作用,并且不强制单排排列。PNP在通道中离子的广泛平均浓度范围内都预测到了AMFE;例如,当(平均而言)在通道孔中发现的离子少于一个或远少于一个时,就会预测到AMFE。在这种处理中,AMFE在很大程度上源于离子特异性结合区域附近产生的耗尽层。结合区域中离子的少量过量浓度排斥所有附近相同电荷的离子,从而形成一个耗尽层。通道的整体电导率实际上源于串联的电阻器,一个来自结合区域,一个来自耗尽区,一个来自非结合区域。阻值最高的电阻器(出现在耗尽区)限制了整体串联电导率。在此,AMFE不是单排排列或多重占据的结果,因此先前的渗透观点需要修正:AMFE的存在并不意味着离子通过多重占据的孔单排渗透。

相似文献

1
Anomalous mole fraction effect, electrostatics, and binding in ionic channels.
Biophys J. 1998 May;74(5):2327-34. doi: 10.1016/S0006-3495(98)77942-1.
2
The anomalous mole fraction effect in calcium channels: a measure of preferential selectivity.
Biophys J. 2008 Sep 15;95(6):2658-72. doi: 10.1529/biophysj.107.127977. Epub 2008 May 30.
3
Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels.
Biophys J. 1998 Sep;75(3):1287-305. doi: 10.1016/S0006-3495(98)74048-2.
4
Synthetic nanopores as a test case for ion channel theories: the anomalous mole fraction effect without single filing.
Biophys J. 2008 Jul;95(2):609-19. doi: 10.1529/biophysj.107.127985. Epub 2008 Apr 4.
5
Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel.
Biophys J. 1997 Jan;72(1):97-116. doi: 10.1016/S0006-3495(97)78650-8.
6
Voltage-gated calcium channels: direct observation of the anomalous mole fraction effect at the single-channel level.
Proc Natl Acad Sci U S A. 1989 Jul;86(13):5207-11. doi: 10.1073/pnas.86.13.5207.
7
Charges, currents, and potentials in ionic channels of one conformation.
Biophys J. 1993 May;64(5):1405-21. doi: 10.1016/S0006-3495(93)81507-8.
8
Dynamic ion-ion and water-ion interactions in ion channels.
Biophys J. 1992 May;61(5):1316-31. doi: 10.1016/S0006-3495(92)81940-9.
9
Saturation of conductance in single ion channels: the blocking effect of the near reaction field.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Nov;70(5 Pt 1):051912. doi: 10.1103/PhysRevE.70.051912. Epub 2004 Nov 23.
10
Selectivity and permeation in calcium release channel of cardiac muscle: alkali metal ions.
Biophys J. 1999 Mar;76(3):1346-66. doi: 10.1016/S0006-3495(99)77297-8.

引用本文的文献

1
Modeling the Device Behavior of Biological and Synthetic Nanopores with Reduced Models.
Entropy (Basel). 2020 Nov 5;22(11):1259. doi: 10.3390/e22111259.
2
Selective ion permeation involves complexation with carboxylates and lysine in a model human sodium channel.
PLoS Comput Biol. 2018 Sep 12;14(9):e1006398. doi: 10.1371/journal.pcbi.1006398. eCollection 2018 Sep.
3
Comparison of permeation mechanisms in sodium-selective ion channels.
Neurosci Lett. 2019 May 1;700:3-8. doi: 10.1016/j.neulet.2018.05.036. Epub 2018 May 26.
4
The enduring legacy of the "constant-field equation" in membrane ion transport.
J Gen Physiol. 2017 Oct 2;149(10):911-920. doi: 10.1085/jgp.201711839. Epub 2017 Sep 20.
5
Permeation Mechanisms in the TMEM16B Calcium-Activated Chloride Channels.
PLoS One. 2017 Jan 3;12(1):e0169572. doi: 10.1371/journal.pone.0169572. eCollection 2017.
6
Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation.
PLoS One. 2015 Oct 13;10(10):e0138679. doi: 10.1371/journal.pone.0138679. eCollection 2015.
7
Sodium channel selectivity and conduction: prokaryotes have devised their own molecular strategy.
J Gen Physiol. 2014 Feb;143(2):157-71. doi: 10.1085/jgp.201311037. Epub 2014 Jan 13.
9
Interacting ions in biophysics: real is not ideal.
Biophys J. 2013 May 7;104(9):1849-66. doi: 10.1016/j.bpj.2013.03.049.
10
Permeation models and structure-function relationships in ion channels.
J Biol Phys. 2002 Jun;28(2):289-308. doi: 10.1023/A:1019939900568.

本文引用的文献

1
The potassium permeability of a giant nerve fibre.
J Physiol. 1955 Apr 28;128(1):61-88. doi: 10.1113/jphysiol.1955.sp005291.
2
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
3
Limiting law for ion adsorption in narrow planar pores.
Phys Rev A. 1991 Dec 15;44(12):8235-8241. doi: 10.1103/physreva.44.8235.
4
Permeation through the calcium release channel of cardiac muscle.
Biophys J. 1997 Sep;73(3):1337-54. doi: 10.1016/S0006-3495(97)78167-0.
5
Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel.
Biophys J. 1997 Jan;72(1):97-116. doi: 10.1016/S0006-3495(97)78650-8.
6
Anomalous mole fraction effect induced by mutation of the H5 pore region in the Shaker K+ channel.
Biophys J. 1996 Nov;71(5):2467-72. doi: 10.1016/S0006-3495(96)79440-7.
7
Computing the field in proteins and channels.
J Membr Biol. 1996 Mar;150(1):1-25. doi: 10.1007/s002329900026.
8
Conduction properties of the cloned Shaker K+ channel.
Biophys J. 1993 Nov;65(5):2089-96. doi: 10.1016/S0006-3495(93)81244-X.
10
Classical electrostatics in biology and chemistry.
Science. 1995 May 26;268(5214):1144-9. doi: 10.1126/science.7761829.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验