Suppr超能文献

白色念珠菌固醇甲基转移酶(ERG6)基因的测序、破坏及特性分析:erg6突变体的药敏研究

Sequencing, disruption, and characterization of the Candida albicans sterol methyltransferase (ERG6) gene: drug susceptibility studies in erg6 mutants.

作者信息

Jensen-Pergakes K L, Kennedy M A, Lees N D, Barbuch R, Koegel C, Bard M

机构信息

Department of Biology, Indiana University-Purdue University Indianapolis, 46202-5132, USA.

出版信息

Antimicrob Agents Chemother. 1998 May;42(5):1160-7. doi: 10.1128/AAC.42.5.1160.

Abstract

The rise in the frequency of fungal infections and the increased resistance noted to the widely employed azole antifungals make the development of new antifungals imperative for human health. The sterol biosynthetic pathway has been exploited for the development of several antifungal agents (allylamines, morpholines, azoles), but additional potential sites for antifungal agent development are yet to be fully investigated. The sterol methyltransferase gene (ERG6) catalyzes a biosynthetic step not found in humans and has been shown to result in several compromised phenotypes, most notably markedly increased permeability, when disrupted in Saccharomyces cerevisiae. The Candida albicans ERG6 gene was isolated by complementation of a S. cerevisiae erg6 mutant by using a C. albicans genomic library. Sequencing of the Candida ERG6 gene revealed high homology with the Saccharomyces version of ERG6. The first copy of the Candida ERG6 gene was disrupted by transforming with the URA3 blaster system, and the second copy was disrupted by both URA3 blaster transformation and mitotic recombination. The resulting erg6 strains were shown to be hypersusceptible to a number of sterol synthesis and metabolic inhibitors, including terbinafine, tridemorph, fenpropiomorph, fluphenazine, cycloheximide, cerulenin, and brefeldin A. No increase in susceptibility to azoles was noted. Inhibitors of the ERG6 gene product would make the cell increasingly susceptible to antifungal agents as well as to new agents which normally would be excluded and would allow for clinical treatment at lower dosages. In addition, the availability of ERG6 would allow for its use as a screen for new antifungals targeted specifically to the sterol methyltransferase.

摘要

真菌感染频率的上升以及广泛使用的唑类抗真菌药物耐药性的增加,使得开发新型抗真菌药物对人类健康至关重要。甾醇生物合成途径已被用于开发多种抗真菌药物(烯丙胺类、吗啉类、唑类),但抗真菌药物开发的其他潜在位点尚未得到充分研究。甾醇甲基转移酶基因(ERG6)催化人类不存在的生物合成步骤,并且已证明在酿酒酵母中被破坏时会导致多种受损表型,最显著的是通透性明显增加。通过使用白色念珠菌基因组文库对酿酒酵母erg6突变体进行互补,分离出了白色念珠菌ERG6基因。白色念珠菌ERG6基因的测序显示与酿酒酵母版本的ERG6具有高度同源性。通过URA3爆破系统转化破坏了白色念珠菌ERG6基因的第一个拷贝,通过URA3爆破系统转化和有丝分裂重组破坏了第二个拷贝。结果表明,所得的erg6菌株对多种甾醇合成和代谢抑制剂高度敏感,包括特比萘芬、十三吗啉、苯霜灵、氟奋乃静、环己酰亚胺、浅蓝菌素和布雷菲德菌素A。未观察到对唑类药物敏感性的增加。ERG6基因产物的抑制剂将使细胞对抗真菌药物以及通常会被排除的新药物越来越敏感,并允许以较低剂量进行临床治疗。此外,ERG6的可用性将使其能够用作筛选专门针对甾醇甲基转移酶的新型抗真菌药物的工具。

相似文献

2
Candida albicans sterol C-14 reductase, encoded by the ERG24 gene, as a potential antifungal target site.
Antimicrob Agents Chemother. 2002 Apr;46(4):947-57. doi: 10.1128/AAC.46.4.947-957.2002.
3
Disruption of the Candida albicans CYB5 gene results in increased azole sensitivity.
Antimicrob Agents Chemother. 2004 Sep;48(9):3425-35. doi: 10.1128/AAC.48.9.3425-3435.2004.
5
Identification and Mode of Action of a Plant Natural Product Targeting Human Fungal Pathogens.
Antimicrob Agents Chemother. 2017 Aug 24;61(9). doi: 10.1128/AAC.00829-17. Print 2017 Sep.
6
ERG6 gene deletion modifies Kluyveromyces lactis susceptibility to various growth inhibitors.
Yeast. 2016 Dec;33(12):621-632. doi: 10.1002/yea.3212. Epub 2016 Nov 9.
9
Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae.
Antimicrob Agents Chemother. 2003 Sep;47(9):2717-24. doi: 10.1128/AAC.47.9.2717-2724.2003.

引用本文的文献

1
Impact of ERG6 Gene Deletion on Membrane Composition and Properties in the Pathogenic Yeast Candida glabrata.
Cell Biochem Biophys. 2025 Jun;83(2):1909-1918. doi: 10.1007/s12013-024-01599-w. Epub 2024 Oct 31.
2
Erg251 has complex and pleiotropic effects on sterol composition, azole susceptibility, filamentation, and stress response phenotypes.
PLoS Pathog. 2024 Jul 30;20(7):e1012389. doi: 10.1371/journal.ppat.1012389. eCollection 2024 Jul.
3
Toxic eburicol accumulation drives the antifungal activity of azoles against Aspergillus fumigatus.
Nat Commun. 2024 Jul 26;15(1):6312. doi: 10.1038/s41467-024-50609-1.
7
Transcriptional Reprogramming of in Response to Isoespintanol Treatment.
J Fungi (Basel). 2023 Dec 15;9(12):1199. doi: 10.3390/jof9121199.
8
Erg6 Acts as a Downstream Effector of the Transcription Factor Flo8 To Regulate Biofilm Formation in Candida albicans.
Microbiol Spectr. 2023 Jun 15;11(3):e0039323. doi: 10.1128/spectrum.00393-23. Epub 2023 Apr 26.
9
Mathematical Modeling of Fluconazole Resistance in the Ergosterol Pathway of .
mSystems. 2022 Dec 20;7(6):e0069122. doi: 10.1128/msystems.00691-22. Epub 2022 Nov 16.
10
Direct and Indirect Effects of Essential Oils for Sustainable Crop Protection.
Plants (Basel). 2022 Aug 18;11(16):2144. doi: 10.3390/plants11162144.

本文引用的文献

1
DEVELOPMENT OF RESISTANCE TO POLYENE ANTIBIOTICS IN CANDIDA ALBICANS.
J Bacteriol. 1965 Jun;89(6):1533-9. doi: 10.1128/jb.89.6.1533-1539.1965.
5
6
Itraconazole resistance in Aspergillus fumigatus.
Antimicrob Agents Chemother. 1997 Jun;41(6):1364-8. doi: 10.1128/AAC.41.6.1364.
7
Fluconazole tolerance in clinical isolates of Cryptococcus neoformans.
Antimicrob Agents Chemother. 1997 Apr;41(4):748-51. doi: 10.1128/AAC.41.4.748.
9
Hypothesis on the mechanism of resistance to fluconazole in Histoplasma capsulatum.
Antimicrob Agents Chemother. 1997 Feb;41(2):410-4. doi: 10.1128/AAC.41.2.410.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验