Suppr超能文献

Effect of reactive oxygen species promoted by delta-aminolevulinic acid on porphyrin biosynthesis and glucose uptake in rat cerebellum.

作者信息

Princ F G, Juknat A A, Amitrano A A, Batlle A

机构信息

Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.

出版信息

Gen Pharmacol. 1998 Jul;31(1):143-8. doi: 10.1016/s0306-3623(97)00388-1.

Abstract
  1. delta-Aminolevulinic acid (ALA) has been reported to promote reactive oxygen species (ROS). Overproduction and accumulation of ALA, as it occurs in acute intermittent porphyria (AIP), can be the origin of an endogenous source of ROS, which can then exert their oxidative damage to cell structures. 2. To investigate the induction of lipid peroxidation by ALA, thiobarbituric acid reactive substances and conjugated diene formation were measured by using minimal tissue units (MTUs) obtained from rat cerebellum. Malondialdehyde levels increased with ALA concentration and incubation time (72% at 1.0 mM ALA and 127% at 4.0 mM ALA for 4 hr), and conjugated diene formation was enhanced 50% in incubations with 1.0 mM ALA for 4 hr. 3. ALA-promoted ROS by exposure of cerebellum MTUs to 1.0 mM ALA during different intervals (1-4 hr) was partly reduced by the addition of antioxidants such as superoxide dismutase (SOD; 50 U/ml), catalase (4.5 microM) and dimethylsulfoxide (150 mM), demonstrating the involvement of O2-., H2O2 and OH. in ALA autooxidation. 4. Porphobilinogen biosynthesis was 170% increased when cerebellum MTUs were incubated with 1.0 mM ALA for 4 hr in the presence of SOD, suggesting that protein damage was promoted by ALA autooxidation. 5. These findings provide the first experimental evidence of the involvement of ALA-promoted ROS in the damage of proteins related to porphyrin biosynthesis, specially ALA-D. Oxidation of this enzyme would lead to further accumulation of ALA in AIP patients, which may be the origin of the well-known neuropsychiatric manifestations.
摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验