Suppr超能文献

荧光光谱在细胞成像中的新兴应用:寿命成像、金属-配体探针、多光子激发和光猝灭。

Emerging applications of fluorescence spectroscopy to cellular imaging: lifetime imaging, metal-ligand probes, multi-photon excitation and light quenching.

作者信息

Lakowicz J R

机构信息

Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore.

出版信息

Scanning Microsc Suppl. 1996;10:213-24.

PMID:9601541
Abstract

Advances in time-resolved fluorescence spectroscopy can be applied to cellular imaging. Fluorescence lifetime imaging microscopy (FLIM) creates image contrast based on the decay time of sensing probes at each point in a two-dimensional image. FLIM allows imaging of Ca2+ and other ions without the need for wavelength-ratiometric probes. Ca2+ imaging can be performed by FLIM with visible wavelength excitation. Instrumentation for FLIM is potentially simple enough to be present in most research laboratories. Applications of fluorescence are often limited by the lack of suitable fluorophores. New, highly photostable probes allow off-gating of the prompt autofluorescence, and measurement of rotational motion of large macromolecules. These luminescent metal-ligand complexes will become widely utilized. Modern pulse lasers allow new experiments based on non-linear phenomena. With picosecond and femtosecond lasers fluorophores can be excited by simultaneous absorption of two or three photons. Hence, Ca2+ probes, membrane probes, and even intrinsic protein fluorescence can be excited with red or near infrared wavelengths, without ultraviolet lasers or optics. Finally, light itself can be used to control the excited state population. By using light pulses whose wavelength overlaps the emission spectrum of a fluorophore one can modify the excited state population and orientation. This use of non-absorbed light to modify emission can have wide reaching applications in cellular imaging.

摘要

时间分辨荧光光谱学的进展可应用于细胞成像。荧光寿命成像显微镜(FLIM)基于二维图像中每个点处传感探针的衰减时间来产生图像对比度。FLIM允许对Ca2+和其他离子进行成像,而无需波长比率探针。Ca2+成像可通过FLIM在可见波长激发下进行。FLIM的仪器设备可能足够简单,大多数研究实验室都可以配备。荧光的应用通常受到缺乏合适荧光团的限制。新型的、高度光稳定的探针可实现即时自发荧光的关闭门控,并可测量大型大分子的旋转运动。这些发光金属-配体配合物将得到广泛应用。现代脉冲激光器允许基于非线性现象进行新的实验。使用皮秒和飞秒激光器,可以通过同时吸收两个或三个光子来激发荧光团。因此,Ca2+探针、膜探针,甚至蛋白质的固有荧光都可以用红色或近红外波长激发,而无需紫外激光器或光学器件。最后,光本身可用于控制激发态粒子数。通过使用波长与荧光团发射光谱重叠的光脉冲,可以改变激发态粒子数和取向。这种利用未吸收光来改变发射的方法在细胞成像中可能有广泛的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验