Suppr超能文献

用于检测细胞中荧光共振能量转移(FRET)的多维时间相关单光子计数(TCSPC)荧光寿命成像显微镜(FLIM)。

Multi-dimensional time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) to detect FRET in cells.

作者信息

Duncan R R, Bergmann A, Cousin M A, Apps D K, Shipston M J

机构信息

Membrane Biology Group, University of Edinburgh, George Square, EH8 9XD, UK.

出版信息

J Microsc. 2004 Jul;215(Pt 1):1-12. doi: 10.1111/j.0022-2720.2004.01343.x.

Abstract

We present a novel, multi-dimensional, time-correlated single photon counting (TCSPC) technique to perform fluorescence lifetime imaging with a laser-scanning microscope operated at a pixel dwell-time in the microsecond range. The unsurpassed temporal accuracy of this approach combined with a high detection efficiency was applied to measure the fluorescent lifetimes of enhanced cyan fluorescent protein (ECFP) in isolation and in tandem with EYFP (enhanced yellow fluorescent protein). This technique enables multi-exponential decay analysis in a scanning microscope with high intrinsic time resolution, accuracy and counting efficiency, particularly at the low excitation levels required to maintain cell viability and avoid photobleaching. Using a construct encoding the two fluorescent proteins separated by a fixed-distance amino acid spacer, we were able to measure the fluorescence resonance energy transfer (FRET) efficiency determined by the interchromophore distance. These data revealed that ECFP exhibits complex exponential fluorescence decays under both FRET and non-FRET conditions, as previously reported. Two approaches to calculate the distance between donor and acceptor from the lifetime delivered values within a 10% error range. To confirm that this method can be used also to quantify intermolecular FRET, we labelled cultured neurones with the styryl dye FM1-43, quantified the fluorescence lifetime, then quenched its fluorescence using FM4-64, an efficient energy acceptor for FM1-43 emission. These experiments confirmed directly for the first time that FRET occurs between these two chromophores, characterized the lifetimes of these probes, determined the interchromophore distance in the plasma membrane and provided high-resolution two-dimensional images of lifetime distributions in living neurones.

摘要

我们提出了一种新颖的、多维的、时间相关单光子计数(TCSPC)技术,用于在像素驻留时间处于微秒范围的激光扫描显微镜上进行荧光寿命成像。这种方法无与伦比的时间精度与高检测效率相结合,被用于单独测量增强型青色荧光蛋白(ECFP)以及与增强型黄色荧光蛋白(EYFP)串联时的荧光寿命。该技术能够在扫描显微镜中进行多指数衰减分析,具有高本征时间分辨率、准确性和计数效率,特别是在维持细胞活力和避免光漂白所需的低激发水平下。使用一种编码由固定距离氨基酸间隔区隔开的两种荧光蛋白的构建体,我们能够测量由发色团间距离决定的荧光共振能量转移(FRET)效率。这些数据表明,如先前报道的那样,ECFP在FRET和非FRET条件下均表现出复杂的指数荧光衰减。有两种方法可根据寿命传递值在10%误差范围内计算供体和受体之间的距离。为了证实该方法也可用于量化分子间FRET,我们用苯乙烯基染料FM1-43标记培养的神经元,量化荧光寿命,然后使用FM4-64淬灭其荧光,FM4-64是FM1-43发射的有效能量受体。这些实验首次直接证实了这两种发色团之间发生了FRET,表征了这些探针的寿命,确定了质膜中的发色团间距离,并提供了活神经元中寿命分布的高分辨率二维图像。

相似文献

9
FLIM-FRET Protein-Protein Interaction Assay.FRET 蛋白-蛋白相互作用分析。
Methods Mol Biol. 2024;2797:261-269. doi: 10.1007/978-1-0716-3822-4_19.

引用本文的文献

3
Four-dimensional multi-particle tracking in living cells based on lifetime imaging.基于寿命成像的活细胞中的四维多粒子追踪
Nanophotonics. 2022 Mar 16;11(8):1537-1547. doi: 10.1515/nanoph-2021-0681. eCollection 2022 Mar.

本文引用的文献

9
Fluorescent zinc indicators for neurobiology.用于神经生物学的荧光锌指示剂。
J Neurosci Methods. 2002 Jul 30;118(1):63-75. doi: 10.1016/s0165-0270(02)00144-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验