Suppr超能文献

在感知1/f音乐过程中,通过对脑电图混沌动力学进行非线性分析来量化情绪。

Quantification of emotion by nonlinear analysis of the chaotic dynamics of electroencephalograms during perception of 1/f music.

作者信息

Jeong J, Joung M K, Kim S Y

机构信息

Department of Physics, Korea Advanced Institute of Science and Technology, Taejon, Korea.

出版信息

Biol Cybern. 1998 Mar;78(3):217-25. doi: 10.1007/s004220050428.

Abstract

The goal of this study is to quantify and determine the way in which the emotional response to music is reflected in the electrical activities of the brain. When the power spectrum of sequences of musical notes is inversely proportional to the frequency on a log-log plot, we call it 1/f music. According to previous research, most listeners agree that 1/f music is much more pleasing than white (1/f0) or brown (1/f2) music. Based on these studies, we used nonlinear methods to investigate the chaotic dynamics of electroencephalograms (EEGs) elicited by computer-generated 1/f music, white music, and brown music. In this analysis, we used the correlation dimension and the largest Lyapunov exponent as measures of complexity and chaos. We developed a new method that is strikingly faster and more accurate than other algorithms for calculating the nonlinear invariant measures from limited noisy data. At the right temporal lobe, 1/f music elicited lower values of both the correlation dimension and the largest Lyapunov exponent than white or brown music. We observed that brains which feel more pleased show decreased chaotic electrophysiological behavior. By observing that the nonlinear invariant measures for the 1/f distribution of the rhythm with the melody kept constant are lower than those for the 1/f distribution of melody with the rhythm kept constant, we could conclude that the rhythm variations contribute much more to a pleasing response to music than the melody variations do. These results support the assumption that chaos plays an important role in brain function, especially emotion.

摘要

本研究的目标是量化并确定对音乐的情感反应在大脑电活动中的体现方式。当音符序列的功率谱在对数-对数图上与频率成反比时,我们将其称为1/f音乐。根据先前的研究,大多数听众认为1/f音乐比白色(1/f0)或棕色(1/f2)音乐更悦耳。基于这些研究,我们使用非线性方法来研究由计算机生成的1/f音乐、白色音乐和棕色音乐引发的脑电图(EEG)的混沌动力学。在该分析中,我们使用关联维数和最大Lyapunov指数作为复杂性和混沌的度量。我们开发了一种新方法,该方法在从有限的噪声数据计算非线性不变量时,比其他算法显著更快且更准确。在右颞叶,1/f音乐引发的关联维数和最大Lyapunov指数值均低于白色或棕色音乐。我们观察到,感觉更愉悦的大脑表现出混沌电生理行为的减少。通过观察在旋律保持不变时节奏的1/f分布的非线性不变量低于在节奏保持不变时旋律的1/f分布的非线性不变量,我们可以得出结论,节奏变化对音乐愉悦反应的贡献比旋律变化大得多。这些结果支持了混沌在大脑功能尤其是情感中起重要作用的假设。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验