Shirokov R, Ferreira G, Yi J, Ríos E
Department of Molecular Biophysics and Physiology, Rush University School of Medicine, Chicago, Illinois 60612, USA.
J Gen Physiol. 1998 Jun;111(6):807-23. doi: 10.1085/jgp.111.6.807.
In studies of gating currents of rabbit cardiac Ca channels expressed as alpha 1C/beta 2a or alpha 1C/beta 2a/alpha 2 delta subunit combinations in tsA201 cells, we found that long-lasting depolarization shifted the distribution of mobile charge to very negative potentials. The phenomenon has been termed charge interconversion in native skeletal muscle (Brum, G., and E. Ríos. 1987. J. Physiol. (Camb.). 387:489-517) and cardiac Ca channels (Shirokov, R., R. Levis, N. Shirokova, and E. Ríos. 1992. J. Gen. Physiol. 99:863-895). Charge 1 (voltage of half-maximal transfer, V1/2 approximately 0 mV) gates noninactivated channels, while charge 2 (V1/2 approximately -90 mV) is generated in inactivated channels. In alpha 1C/beta 2a cells, the available charge 1 decreased upon inactivating depolarization with a time constant tau approximately 8, while the available charge 2 decreased upon recovery from inactivation (at -200 mV) with tau approximately 0.3 s. These processes therefore are much slower than charge movement, which takes <50 ms. This separation between the time scale of measurable charge movement and that of changes in their availability, which was even wider in the presence of alpha 2 delta, implies that charges 1 and 2 originate from separate channel modes. Because clear modal separation characterizes slow (C-type) inactivation of Na and K channels, this observation establishes the nature of voltage-dependent inactivation of L-type Ca channels as slow or C-type. The presence of the alpha 2 delta subunit did not change the V1/2 of charge 2, but sped up the reduction of charge 1 upon inactivation at 40 mV (to tau approximately 2 s), while slowing the reduction of charge 2 upon recovery (tau approximately 2 s). The observations were well simulated with a model that describes activation as continuous electrodiffusion (Levitt, D. 1989. Biophys. J. 55:489-498) and inactivation as discrete modal change. The effects of alpha 2 delta are reproduced assuming that the subunit lowers the free energy of the inactivated mode.
在对兔心脏钙通道门控电流的研究中,这些通道在tsA201细胞中以α1C/β2a或α1C/β2a/α2δ亚基组合的形式表达,我们发现长时间的去极化会将移动电荷的分布转移到非常负的电位。这种现象在天然骨骼肌(Brum, G., 和E. Ríos. 1987. 《生理学杂志》(坎布里奇)。387:489 - 517)和心脏钙通道(Shirokov, R., R. Levis, N. Shirokova, 和E. Ríos. 1992. 《普通生理学杂志》99:863 - 895)中被称为电荷互变。电荷1(半最大转移电压,V1/2约为0 mV)控制未失活的通道,而电荷2(V1/2约为 - 90 mV)在失活的通道中产生。在α1C/β2a细胞中,可用电荷1在失活去极化时以时间常数τ约为8而减少,而可用电荷2在从失活状态恢复(在 - 200 mV)时以τ约为0.3 s而减少。因此,这些过程比电荷移动要慢得多,电荷移动耗时<50 ms。可测量的电荷移动时间尺度与其可用性变化的时间尺度之间的这种分离,在存在α2δ时甚至更宽,这意味着电荷1和电荷2源自不同的通道模式。因为清晰的模式分离是钠通道和钾通道慢(C型)失活的特征,所以这一观察结果确定了L型钙通道电压依赖性失活的性质为慢或C型。α2δ亚基的存在没有改变电荷2的V1/2,但加快了在40 mV失活时电荷1的减少(至τ约为2 s),同时减缓了恢复时电荷2的减少(τ约为2 s)。用一个将激活描述为连续电扩散(Levitt, D. 1989. 《生物物理学杂志》55:489 - 498)且将失活描述为离散模式变化的模型对这些观察结果进行了很好的模拟。假设该亚基降低了失活模式的自由能,从而再现了α2δ的作用。