Suppr超能文献

有限细分群体中自交不亲和等位基因的数量。

The number of self-incompatibility alleles in a finite, subdivided population.

作者信息

Schierup M H

机构信息

Department of Ecology and Genetics, Institute of Biology, University of Aarhus, DK-8000 Aarhus C, Denmark.

出版信息

Genetics. 1998 Jun;149(2):1153-62. doi: 10.1093/genetics/149.2.1153.

Abstract

The actual and effective number of gametophytic self-incompatibility alleles maintained at mutation-drift-selection equilibrium in a finite population subdivided as in the island model is investigated by stochastic simulations. The existing theory founded by Wright predicts that for a given population size the number of alleles maintained increases monotonically with decreasing migration as is the case for neutral alleles. The simulation results here show that this is not true. At migration rates above Nm = 0.01-0.1, the actual and effective number of alleles is lower than for an undivided population with the same number of individuals, and, contrary to Wright's theoretical expectation, the number of alleles is not much higher than for an undivided population unless Nm < 0.001. The same pattern is observed in a model where the alleles display symmetrical overdominant selection. This broadens the applicability of the results to include proposed models for the major histocompatibility (MHC) loci. For a subdivided population over a large range of migration rates, it appears that the number of self-incompatibility alleles (or MHC-alleles) observed can provide a rough estimate of the total number of individuals in the population but it underestimates the neutral effective size of the subdivided population.

摘要

通过随机模拟研究了在岛屿模型中有限群体中,处于突变-漂移-选择平衡状态下维持的配子体自交不亲和等位基因的实际数量和有效数量。赖特创立的现有理论预测,对于给定的种群大小,维持的等位基因数量会随着迁移率的降低而单调增加,就像中性等位基因的情况一样。这里的模拟结果表明并非如此。在迁移率高于Nm = 0.01 - 0.1时,等位基因的实际数量和有效数量低于个体数量相同的未分化群体,并且与赖特的理论预期相反,除非Nm < 0.001,等位基因数量不会比未分化群体高很多。在等位基因表现出对称超显性选择的模型中也观察到了相同的模式。这拓宽了结果的适用性,使其包括了主要组织相容性复合体(MHC)位点的提议模型。对于在大范围迁移率下的细分群体,似乎观察到的自交不亲和等位基因(或MHC等位基因)数量可以提供该群体中个体总数的粗略估计,但它低估了细分群体的中性有效大小。

相似文献

1
The number of self-incompatibility alleles in a finite, subdivided population.
Genetics. 1998 Jun;149(2):1153-62. doi: 10.1093/genetics/149.2.1153.
3
The effect of subdivision on variation at multi-allelic loci under balancing selection.
Genet Res. 2000 Aug;76(1):51-62. doi: 10.1017/s0016672300004535.
4
Consequences of population structure on genes under balancing selection.
Evolution. 2001 Aug;55(8):1532-41. doi: 10.1111/j.0014-3820.2001.tb00673.x.
5
Revisiting the number of self-incompatibility alleles in finite populations: From old models to new results.
J Evol Biol. 2022 Oct;35(10):1296-1308. doi: 10.1111/jeb.14061. Epub 2022 Jul 19.
6
Evolutionary dynamics of sporophytic self-incompatibility alleles in plants.
Genetics. 1997 Oct;147(2):835-46. doi: 10.1093/genetics/147.2.835.
7
Transient SI and the dynamics of self-incompatibility alleles: a simulation model and empirical test.
Evolution. 2008 Aug;62(8):2105-11. doi: 10.1111/j.1558-5646.2008.00429.x. Epub 2008 May 27.
8
Gene and allelic genealogies at a gametophytic self-incompatibility locus.
Genetics. 1994 Aug;137(4):1157-65. doi: 10.1093/genetics/137.4.1157.
9
A general model to explore complex dominance patterns in plant sporophytic self-incompatibility systems.
Genetics. 2007 Mar;175(3):1351-69. doi: 10.1534/genetics.105.055095. Epub 2007 Jan 21.
10
Antagonism between local dispersal and self-incompatibility systems in a continuous plant population.
Mol Ecol. 2009 Jun;18(11):2327-36. doi: 10.1111/j.1365-294X.2009.04180.x. Epub 2009 Apr 23.

引用本文的文献

1
Genetic and Habitat Rescue Improve Population Viability in Self-Incompatible Plants.
Evol Appl. 2024 Nov 8;17(11):e70037. doi: 10.1111/eva.70037. eCollection 2024 Nov.
3
Self-incompatibility phenotypes of SRK mutants can be predicted with high accuracy.
bioRxiv. 2024 Apr 11:2024.04.10.588956. doi: 10.1101/2024.04.10.588956.
4
Maintenance of Adaptive Dynamics and No Detectable Load in a Range-Edge Outcrossing Plant Population.
Mol Biol Evol. 2021 May 4;38(5):1820-1836. doi: 10.1093/molbev/msaa322.
6
Forward-in-Time, Spatially Explicit Modeling Software to Simulate Genetic Lineages Under Selection.
Evol Bioinform Online. 2016 Feb 25;11(Suppl 2):27-39. doi: 10.4137/EBO.S33488. eCollection 2015.
7
Life history mediates mate limitation and population viability in self-incompatible plant species.
Ecol Evol. 2014 Mar;4(6):673-87. doi: 10.1002/ece3.963. Epub 2014 Feb 13.
9
Inference of selection based on temporal genetic differentiation in the study of highly polymorphic multigene families.
PLoS One. 2012;7(8):e42119. doi: 10.1371/journal.pone.0042119. Epub 2012 Aug 10.

本文引用的文献

1
Genetic variability maintained by mutation and overdominant selection in finite populations.
Genetics. 1981 Jun;98(2):441-59. doi: 10.1093/genetics/98.2.441.
3
The Distribution of Self-Sterility Alleles in Populations.
Genetics. 1939 Jun;24(4):538-52. doi: 10.1093/genetics/24.4.538.
4
A Preliminary Survey of the Oenothera Organensis Population.
Genetics. 1939 Jun;24(4):524-37. doi: 10.1093/genetics/24.4.524.
5
THE MAINTENANCE OF ALLELES BY MUTATION.
Genetics. 1964 Nov;50(5):891-8. doi: 10.1093/genetics/50.5.891.
6
THE NUMBER OF ALLELES THAT CAN BE MAINTAINED IN A FINITE POPULATION.
Genetics. 1964 Apr;49(4):725-38. doi: 10.1093/genetics/49.4.725.
7
The equilibrium of a self-incompatible polymorphic species.
Genetica. 1952;26(1):33-64. doi: 10.1007/BF01690614.
8
The evolution of human populations: a molecular perspective.
Mol Phylogenet Evol. 1996 Feb;5(1):188-201. doi: 10.1006/mpev.1996.0013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验