Suppr超能文献

植物细胞壁结构的形成:细胞如何利用几何学原理。

The making of the architecture of the plant cell wall: how cells exploit geometry.

作者信息

Emons A M, Mulder B M

机构信息

Department of Plant Sciences, Laboratory of Plant Cytology and Morphology, Wageningen Agricultural University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7215-9. doi: 10.1073/pnas.95.12.7215.

Abstract

Cell wall deposition is a key process in the formation, growth, and differentiation of plant cells. The most important structural components of the wall are long cellulose microfibrils, which are synthesized by synthases embedded in the plasma membrane. A fundamental question is how the microfibrils become oriented during deposition at the plasma membrane. The current textbook explanation for the orientation mechanism is a guidance system mediated by cortical microtubules. However, too many contraindications are known in secondary cell walls for this to be a universal mechanism, particularly in the case of helicoidal arrangements, which occur in many situations. An additional construction mechanism involves liquid crystalline self-assembly [A. C. Neville (1993) Biology of Fibrous Composites: Development Beyond the Cell Membrane (Cambridge Univ. Press, Cambridge, U.K.)], but the required amount of bulk material that is able to equilibrate thermally is not normally present at any stage of the wall deposition process. Therefore, we have asked whether the complex ordered texture of helicoidal cell walls can be formed in the absence of direct cellular guidance mechanisms. We propose that they can be formed by a mechanism that is based on geometrical considerations. It explains the genesis of the complicated helicoidal texture and shows that the cell has intrinsic, versatile tools for creating a variety of textures. A compelling feature of the model is that local rules generate global order, a typical phenomenon of life.

摘要

细胞壁沉积是植物细胞形成、生长和分化过程中的关键环节。细胞壁最重要的结构成分是长链纤维素微纤丝,它们由嵌入质膜的合成酶合成。一个基本问题是微纤丝在质膜沉积过程中是如何定向的。目前教科书中对定向机制的解释是由皮层微管介导的引导系统。然而,在次生细胞壁中已知有太多反例表明这并非普遍机制,特别是在许多情况下出现的螺旋排列情形。另一种构建机制涉及液晶自组装 [A. C. 内维尔(1993年)《纤维复合材料生物学:细胞膜之外的发展》(英国剑桥大学出版社,剑桥)],但在细胞壁沉积过程的任何阶段通常都不存在能够进行热平衡的所需大量物质。因此,我们提出疑问,在没有直接细胞引导机制的情况下,螺旋状细胞壁的复杂有序纹理是否能够形成。我们认为它们可以通过一种基于几何考虑的机制形成。这解释了复杂螺旋纹理的成因,并表明细胞拥有内在的、通用的工具来创造各种纹理。该模型一个引人注目的特点是局部规则产生全局秩序,这是生命的一种典型现象。

相似文献

1
The making of the architecture of the plant cell wall: how cells exploit geometry.
Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7215-9. doi: 10.1073/pnas.95.12.7215.
2
On the robustness of the geometrical model for cell wall deposition.
Bull Math Biol. 2010 May;72(4):869-95. doi: 10.1007/s11538-009-9472-0. Epub 2009 Dec 30.
3
How the deposition of cellulose microfibrils builds cell wall architecture.
Trends Plant Sci. 2000 Jan;5(1):35-40. doi: 10.1016/s1360-1385(99)01507-1.
5
A dynamical model for plant cell wall architecture formation.
J Math Biol. 2001 Mar;42(3):261-89. doi: 10.1007/s002850000063.
6
Helicoidal cell-wall texture in root hairs.
Planta. 1987 Feb;170(2):145-51. doi: 10.1007/BF00397882.
7
Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation.
Plant Cell Physiol. 2015 Feb;56(2):195-214. doi: 10.1093/pcp/pcu140. Epub 2014 Oct 7.
8
Cellulose microfibril deposition: coordinated activity at the plant plasma membrane.
J Microsc. 2008 Aug;231(2):192-200. doi: 10.1111/j.1365-2818.2008.02035.x.
10
Progress in understanding the role of microtubules in plant cells.
Curr Opin Plant Biol. 2004 Dec;7(6):651-60. doi: 10.1016/j.pbi.2004.09.008.

引用本文的文献

1
Torsion-Resistant Structures: A Nature Addressed Solution.
Materials (Basel). 2021 Sep 17;14(18):5368. doi: 10.3390/ma14185368.
2
Elongation and shape changes in organisms with cell walls: A dialogue between experiments and models.
Cell Surf. 2018 Apr 13;1:34-42. doi: 10.1016/j.tcsw.2018.04.001. eCollection 2018 Mar.
4
Morphological and structural characterization of the attachment system in aerial roots of Syngonium podophyllum.
Planta. 2017 Mar;245(3):507-521. doi: 10.1007/s00425-016-2621-4. Epub 2016 Nov 25.
5
The impact of alterations in lignin deposition on cellulose organization of the plant cell wall.
Biotechnol Biofuels. 2016 Jun 17;9:126. doi: 10.1186/s13068-016-0540-z. eCollection 2016.
6
Morphogenesis of complex plant cell shapes: the mechanical role of crystalline cellulose in growing pollen tubes.
Sex Plant Reprod. 2010 Mar;23(1):15-27. doi: 10.1007/s00497-009-0110-7. Epub 2009 Aug 25.
7
The cellulose synthase complex: a polymerization driven supramolecular motor.
Biophys J. 2007 Apr 15;92(8):2666-73. doi: 10.1529/biophysj.106.099473. Epub 2007 Jan 19.
9
Knockout of the AtCESA2 gene affects microtubule orientation and causes abnormal cell expansion in Arabidopsis.
Plant Physiol. 2007 Jan;143(1):213-24. doi: 10.1104/pp.106.088393. Epub 2006 Nov 3.

本文引用的文献

1
Plasma-membrane rosettes in root hairs of Equisetum hyemale.
Planta. 1985 Mar;163(3):350-9. doi: 10.1007/BF00395143.
2
Cloning in silico.
Curr Biol. 1997 Feb 1;7(2):R108-11. doi: 10.1016/s0960-9822(06)00050-9.
4
Cellulose biosynthesis.
Plant Cell. 1995 Jul;7(7):987-1000. doi: 10.1105/tpc.7.7.987.
5
The plant extracellular matrix.
Curr Opin Cell Biol. 1989 Oct;1(5):1020-7. doi: 10.1016/0955-0674(89)90074-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验