Sissler M, Giegé R, Florentz C
UPR 9002, IBMC du CNRS, Strasbourg, France.
RNA. 1998 Jun;4(6):647-57. doi: 10.1017/s1355838298980037.
Arginylation of tRNA transcripts by yeast arginyl-tRNA synthetase can be triggered by two alternate recognition sets in anticodon loops: C35 and U36 or G36 in tRNA(Arg) and C36 and G37 in tRNA(Asp) (Sissler M, Giegé R, Florentz C, 1996, EMBO J 15:5069-5076). Kinetic studies on tRNA variants were done to explore the mechanisms by which these sets are expressed. Although the synthetase interacts in a similar manner with tRNA(Arg) and tRNA(Asp), the details of the interaction patterns are idiosyncratic, especially in anticodon loops (Sissler M, Eriani G, Martin F, Giegé R, Florentz C, 1997, Nucleic Acids Res 25:4899-4906). Exchange of individual recognition elements between arginine and aspartate tRNA frameworks strongly blocks arginylation of the mutated tRNAs, whereas full exchange of the recognition sets leads to efficient arginine acceptance of the transplanted tRNAs. Unpredictably, the similar catalytic efficiencies of native and transplanted tRNAs originate from different k(cat) and Km combinations. A closer analysis reveals that efficient arginylation results from strong anticooperative effects between individual recognition elements. Nonrecognition nucleotides as well as the tRNA architecture are additional factors that tune efficiency. Altogether, arginyl-tRNA synthetase is able to utilize different context-dependent mechanistic routes to be activated. This confers biological advantages to the arginine aminoacylation system and sheds light on its evolutionary relationship with the aspartate system.
酵母精氨酰 - tRNA合成酶对tRNA转录本的精氨酰化作用可由反密码子环中的两组交替识别序列触发:tRNA(Arg)中的C35和U36或G36,以及tRNA(Asp)中的C36和G37(西斯勒M、吉耶R、弗洛伦茨C,1996年,《欧洲分子生物学组织杂志》15:5069 - 5076)。对tRNA变体进行了动力学研究,以探究这些序列发挥作用的机制。尽管合成酶与tRNA(Arg)和tRNA(Asp)的相互作用方式相似,但相互作用模式的细节却各有特点,尤其是在反密码子环中(西斯勒M、埃里亚尼G、马丁F、吉耶R、弗洛伦茨C,1997年,《核酸研究》25:4899 - 4906)。在精氨酸和天冬氨酸tRNA框架之间交换单个识别元件会强烈阻碍突变tRNA的精氨酰化,而识别序列的完全交换则会使移植的tRNA有效地接受精氨酸。不可预测的是,天然tRNA和移植tRNA相似的催化效率源自不同的k(cat)和Km组合。进一步分析表明,高效的精氨酰化是由单个识别元件之间强烈的反协同效应导致的。非识别核苷酸以及tRNA结构是调节效率的其他因素。总之,精氨酰 - tRNA合成酶能够利用不同的上下文依赖机制途径被激活。这赋予了精氨酸氨基酰化系统生物学优势,并揭示了其与天冬氨酸系统的进化关系。