Suppr超能文献

精氨酰 - tRNA合成酶催化的tRNA氨酰化作用:底物结合过程中的诱导构象

tRNA aminoacylation by arginyl-tRNA synthetase: induced conformations during substrates binding.

作者信息

Delagoutte B, Moras D, Cavarelli J

机构信息

UPR 9004 Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, France.

出版信息

EMBO J. 2000 Nov 1;19(21):5599-610. doi: 10.1093/emboj/19.21.5599.

Abstract

The 2.2 A crystal structure of a ternary complex formed by yeast arginyl-tRNA synthetase and its cognate tRNA(Arg) in the presence of the L-arginine substrate highlights new atomic features used for specific substrate recognition. This first example of an active complex formed by a class Ia aminoacyl-tRNA synthetase and its natural cognate tRNA illustrates additional strategies used for specific tRNA selection. The enzyme specifically recognizes the D-loop and the anticodon of the tRNA, and the mutually induced fit produces a conformation of the anticodon loop never seen before. Moreover, the anticodon binding triggers conformational changes in the catalytic center of the protein. The comparison with the 2.9 A structure of a binary complex formed by yeast arginyl-tRNA synthetase and tRNA(Arg) reveals that L-arginine binding controls the correct positioning of the CCA end of the tRNA(Arg). Important structural changes induced by substrate binding are observed in the enzyme. Several key residues of the active site play multiple roles in the catalytic pathway and thus highlight the structural dynamics of the aminoacylation reaction.

摘要

酵母精氨酰 - tRNA合成酶与其同源tRNA(Arg)在L - 精氨酸底物存在下形成的三元复合物的2.2 Å晶体结构突出了用于特异性底物识别的新原子特征。这是由I类氨酰 - tRNA合成酶及其天然同源tRNA形成的活性复合物的首个实例,阐明了用于特异性tRNA选择的其他策略。该酶特异性识别tRNA的D环和反密码子,相互诱导契合产生了前所未见的反密码子环构象。此外,反密码子结合引发了蛋白质催化中心的构象变化。与酵母精氨酰 - tRNA合成酶和tRNA(Arg)形成的二元复合物的2.9 Å结构相比,发现L - 精氨酸结合控制了tRNA(Arg)的CCA末端的正确定位。在酶中观察到底物结合诱导的重要结构变化。活性位点的几个关键残基在催化途径中发挥多种作用,从而突出了氨酰化反应的结构动力学。

相似文献

1
tRNA aminoacylation by arginyl-tRNA synthetase: induced conformations during substrates binding.
EMBO J. 2000 Nov 1;19(21):5599-610. doi: 10.1093/emboj/19.21.5599.
2
5
Structure of Escherichia coli Arginyl-tRNA Synthetase in Complex with tRNA: Pivotal Role of the D-loop.
J Mol Biol. 2018 May 25;430(11):1590-1606. doi: 10.1016/j.jmb.2018.04.011. Epub 2018 Apr 17.
6
L-arginine recognition by yeast arginyl-tRNA synthetase.
EMBO J. 1998 Sep 15;17(18):5438-48. doi: 10.1093/emboj/17.18.5438.
7
Structural and mutational studies of the recognition of the arginine tRNA-specific major identity element, A20, by arginyl-tRNA synthetase.
Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13537-42. doi: 10.1073/pnas.231267998. Epub 2001 Nov 6.
10
Dimerization of Arginyl-tRNA Synthetase by Free Heme Drives Its Inactivation in Plasmodium falciparum.
Structure. 2016 Sep 6;24(9):1476-87. doi: 10.1016/j.str.2016.06.018. Epub 2016 Aug 5.

引用本文的文献

1
Chemical Evolution of Life on Earth.
Genes (Basel). 2025 Feb 13;16(2):220. doi: 10.3390/genes16020220.
2
Optimization of ACE-tRNAs function in translation for suppression of nonsense mutations.
Nucleic Acids Res. 2024 Dec 11;52(22):14112-14132. doi: 10.1093/nar/gkae1112.
3
Specific tRNAs promote mRNA decay by recruiting the CCR4-NOT complex to translating ribosomes.
Science. 2024 Nov 22;386(6724):eadq8587. doi: 10.1126/science.adq8587.
4
Epileptic encephalopathy linked to a DALRD3 missense variant that impairs tRNA modification.
HGG Adv. 2025 Jan 9;6(1):100377. doi: 10.1016/j.xhgg.2024.100377. Epub 2024 Oct 31.
5
Genomic factors shaping codon usage across the Saccharomycotina subphylum.
G3 (Bethesda). 2024 Nov 6;14(11). doi: 10.1093/g3journal/jkae207.
8
The tRNA identity landscape for aminoacylation and beyond.
Nucleic Acids Res. 2023 Feb 28;51(4):1528-1570. doi: 10.1093/nar/gkad007.
10
Non-homologous End Joining-Mediated Insertional Mutagenesis Reveals a Novel Target for Enhancing Fatty Alcohols Production in .
Front Microbiol. 2022 Apr 25;13:898884. doi: 10.3389/fmicb.2022.898884. eCollection 2022.

本文引用的文献

1
Efficient rebuilding of protein structures.
Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):829-32. doi: 10.1107/S0907444996001783.
2
The CCP4 suite: programs for protein crystallography.
Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3. doi: 10.1107/S0907444994003112.
3
The adaptor hypothesis revisited.
Trends Biochem Sci. 2000 Jul;25(7):311-6. doi: 10.1016/s0968-0004(00)01600-5.
5
Crystallization and preliminary X-ray crystallographic analysis of yeast arginyl-tRNA synthetase-yeast tRNAArg complexes.
Acta Crystallogr D Biol Crystallogr. 2000 Apr;56(Pt 4):492-4. doi: 10.1107/s0907444900001700.
6
Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process.
Microbiol Mol Biol Rev. 2000 Mar;64(1):202-36. doi: 10.1128/MMBR.64.1.202-236.2000.
7
Crystal structure of Escherichia coli methionyl-tRNA synthetase highlights species-specific features.
J Mol Biol. 1999 Dec 17;294(5):1287-97. doi: 10.1006/jmbi.1999.3339.
8
A single base substitution in the variable pocket of yeast tRNA(Arg) eliminates species-specific aminoacylation.
Biochim Biophys Acta. 1999 Dec 27;1473(2-3):356-62. doi: 10.1016/s0304-4165(99)00143-9.
9
Synthesis of aspartyl-tRNA(Asp) in Escherichia coli--a snapshot of the second step.
EMBO J. 1999 Nov 15;18(22):6532-41. doi: 10.1093/emboj/18.22.6532.
10
Themes in RNA-protein recognition.
J Mol Biol. 1999 Oct 22;293(2):255-70. doi: 10.1006/jmbi.1999.2991.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验