Ioannides-Demos L L, Liolios L, Wood P, Spicer W J, McLean A J
Pharmacy Department, Alfred Healthcare Group, Prahran, Victoria, Australia.
Antimicrob Agents Chemother. 1998 Jun;42(6):1365-9. doi: 10.1128/AAC.42.6.1365.
The pharmacokinetic parameters determining antibiotic efficacy are peak concentrations (Cmax), minimum (trough) concentrations (Cmin), and area under the concentration-time curve (AUC). There is general agreement about the importance of Cmax and AUC for aminoglycosides, but this is not so for maintenance of Cmin. With in vitro exposures modelling in vivo administration, Pseudomonas aeruginosa reference strain ATCC 27853 (MIC, 1 mg/liter) and a higher-MIC (relatively resistant) clinical isolate (MIC, 4 mg/liter) were used to explore bacteriostatic and bactericidal outcomes. With P. aeruginosa ATCC 27853, kill followed a complete bolus profile with a 30-min postdistribution peak (Cpeak30) of 10 mg/liter. The clinical isolate required a Cpeak30 bolus profile of 20 mg/liter for kill, and there was no difference between the efficacies of the bolus and infusion exposures. Bolus profiles that were truncated at 8.5 h and producing sublethal effects were then combined with a wide range of Cmins. With a Cpeak30 profile of 8 mg/liter, P. aeruginosa ATCC 27853 showed a graded bacteriostatic response until a Cmin of > or = 0.8 mg/liter, when complete kill resulted. In contrast, bactericidal effects on the clinical isolate required a Cpeak30 profile of 18 mg/liter with a Cmin of > or = 1.0 mg/liter. Therefore, Cmin also contributes to the bactericidal effect of tobramycin, with requirements showing minor variation with change in MIC. Dosing principles for relatively resistant (higher-MIC) organisms are suggested from the data. Relatively higher aminoglycoside doses via infusion regimens are likely to be needed to generate higher peak concentrations and higher AUC values necessary for bactericidal effect in resistant organisms. Maintenance of trough concentrations on the order of 1.0 mg/liter during the interdose interval will tend to guard against the possibility of inadequate peak and AUC exposures for kill.
决定抗生素疗效的药代动力学参数包括峰浓度(Cmax)、最低(谷)浓度(Cmin)以及浓度-时间曲线下面积(AUC)。对于氨基糖苷类药物,人们普遍认同Cmax和AUC的重要性,但对于维持Cmin的重要性却并非如此。通过体外暴露模拟体内给药,使用铜绿假单胞菌参考菌株ATCC 27853(最低抑菌浓度,1毫克/升)和一株更高最低抑菌浓度(相对耐药)的临床分离株(最低抑菌浓度,4毫克/升)来探究抑菌和杀菌效果。对于铜绿假单胞菌ATCC 27853,杀菌呈现出完整的推注模式,分布后30分钟的峰浓度(Cpeak30)为10毫克/升。该临床分离株杀菌所需的推注模式Cpeak30为20毫克/升,且推注暴露和输注暴露的疗效无差异。然后将在8.5小时截断并产生亚致死效应的推注模式与一系列不同的Cmin相结合。当Cpeak30模式为8毫克/升时,铜绿假单胞菌ATCC 27853呈现出分级抑菌反应,直至Cmin≥0.8毫克/升时才实现完全杀菌。相比之下,对该临床分离株的杀菌效果需要Cpeak30模式为18毫克/升且Cmin≥1.0毫克/升。因此,Cmin也有助于妥布霉素的杀菌作用,其要求随最低抑菌浓度的变化有微小差异。根据这些数据提出了针对相对耐药(更高最低抑菌浓度)菌株的给药原则。对于耐药菌株,可能需要通过输注方案给予相对更高剂量的氨基糖苷类药物,以产生杀菌效果所需的更高峰浓度和更高AUC值。在给药间隔期间维持谷浓度在1.0毫克/升左右,将有助于防止出现杀菌所需的峰浓度和AUC暴露不足的可能性。