Hipwell J H, Manivannan A, Vieira P, Sharp P F, Forrester J V
Department of Bio-Medical Physics and Bio-Engineering, University of Aberdeen, UK.
Physiol Meas. 1998 May;19(2):165-80. doi: 10.1088/0967-3334/19/2/004.
Fluorescein angiography is an established technique for examining the functional integrity of the retinal circulation. The ability to quantify this function offers the possibility of early detection of changes due to retinopathy. We have developed a technique to generate functional, parametric images of the retinal circulation. A given angiogram is first registered to align consecutive frames. At each point in the retina, a graph of fluorescein intensity versus time is then constructed and fitted with a gamma variate curve. Parameters are extracted from these curves and formed into parametric images showing the variation in fluorescein passage across the entire area of the angiogram. Parameters examined to date include time to maximum intensity, time of arrival and rise time. The technique has been demonstrated using photographic and scanning laser ophthalmoscopic angiograms of both normal subjects and patients with a variety of retinopathies. The time to maximum images of the normal subjects reveals a similar fillings pattern in each case, whilst the pathologies present in the abnormal angiograms are clearly identified. The generation of functional time to maximum images enables the health of the retinal circulation to be quantified with respect to the rate at which the vasculature fills with fluorescein. This offers a potential tool for detecting the onset of retinopathy and monitoring its progression.