Suppr超能文献

非洲爪蟾尾部同源物Xcad3对Hox基因表达及后部发育的调控

Regulation of Hox gene expression and posterior development by the Xenopus caudal homologue Xcad3.

作者信息

Isaacs H V, Pownall M E, Slack J M

机构信息

Developmental Biology Programme, School of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.

出版信息

EMBO J. 1998 Jun 15;17(12):3413-27. doi: 10.1093/emboj/17.12.3413.

Abstract

The caudal gene codes for a homeodomain transcription factor that is required for normal posterior development in Drosophila. In this study the biological activities of the Xenopus caudal (Cdx) family member Xcad3 are examined. A series of domain-swapping experiments demonstrate that the N-terminus of Xcad3 is necessary for it to activate Hox gene expression and that this function can be replaced by the activation domain from the viral protein VP16. In addition, experiments using an Xcad3 repressor mutant (XcadEn-R), which potently blocks the activity of wild-type Xcad3, are reported. Overexpression of XcadEn-R in embryos inhibits the activation of the same subset of Hox genes that are activated by wild-type Xcad3 and leads to a dramatic disruption of posterior development. We show that Xcad3 is an immediate early target of the FGF signalling pathway and that Xcad3 posteriorizes anterior neural tissue in a similar way to FGF. Furthermore, Xcad3 is required for the activation of Hox genes by FGFs. These data provide strong evidence that Xcad3 is required for normal posterior development and that it regulates the expression of the Hox genes downstream of FGF signalling.

摘要

尾端基因编码一种同源结构域转录因子,它是果蝇正常后部发育所必需的。在本研究中,对非洲爪蟾尾端(Cdx)家族成员Xcad3的生物学活性进行了检测。一系列结构域交换实验表明,Xcad3的N端对于激活Hox基因表达是必需的,并且该功能可被病毒蛋白VP16的激活结构域所取代。此外,还报道了使用一种能有效阻断野生型Xcad3活性的Xcad3阻遏突变体(XcadEn-R)所做的实验。在胚胎中过表达XcadEn-R会抑制与野生型Xcad3激活的相同Hox基因子集的激活,并导致后部发育的显著破坏。我们表明,Xcad3是FGF信号通路的一个即时早期靶点,并且Xcad3以与FGF相似的方式使前侧神经组织向尾侧分化。此外,FGF激活Hox基因需要Xcad3。这些数据提供了强有力的证据,表明Xcad3是正常后部发育所必需的,并且它在FGF信号通路下游调节Hox基因的表达。

相似文献

1
Regulation of Hox gene expression and posterior development by the Xenopus caudal homologue Xcad3.
EMBO J. 1998 Jun 15;17(12):3413-27. doi: 10.1093/emboj/17.12.3413.
2
Two phases of Hox gene regulation during early Xenopus development.
Curr Biol. 1998 May 21;8(11):673-6. doi: 10.1016/s0960-9822(98)70257-x.
4
Multiple points of interaction between retinoic acid and FGF signaling during embryonic axis formation.
Development. 2004 Jun;131(11):2653-67. doi: 10.1242/dev.01129. Epub 2004 May 5.
5
Integration of multiple signal transducing pathways on Fgf response elements of the Xenopus caudal homologue Xcad3.
Development. 2003 Oct;130(20):4907-17. doi: 10.1242/dev.00718. Epub 2003 Aug 20.
6
Cdx-Hox code controls competence for responding to Fgfs and retinoic acid in zebrafish neural tissue.
Development. 2006 Dec;133(23):4709-19. doi: 10.1242/dev.02660. Epub 2006 Nov 1.
7
Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos.
Dev Cell. 2009 Oct;17(4):516-26. doi: 10.1016/j.devcel.2009.08.010.
8
The initiation of Hox gene expression in Xenopus laevis is controlled by Brachyury and BMP-4.
Dev Biol. 2004 Feb 1;266(1):123-37. doi: 10.1016/j.ydbio.2003.10.011.
10
Anteroposterior patterning by mutual repression of orthodenticle and caudal-type transcription factors.
Evol Dev. 1999 Nov-Dec;1(3):143-52. doi: 10.1046/j.1525-142x.1999.99020.x.

引用本文的文献

1
Establishing and maintaining Hox profiles during spinal cord development.
Semin Cell Dev Biol. 2024 Jan-Feb;152-153:44-57. doi: 10.1016/j.semcdb.2023.03.014. Epub 2023 Apr 5.
2
The Organizer and Its Signaling in Embryonic Development.
J Dev Biol. 2021 Nov 1;9(4):47. doi: 10.3390/jdb9040047.
3
A theoretical model of neural maturation in the developing chick spinal cord.
PLoS One. 2020 Dec 18;15(12):e0244219. doi: 10.1371/journal.pone.0244219. eCollection 2020.
6
Caudal-dependent cell positioning directs morphogenesis of the C. elegans ventral epidermis.
Dev Biol. 2020 May 1;461(1):31-42. doi: 10.1016/j.ydbio.2020.01.001. Epub 2020 Jan 7.
7
New roles for Wnt and BMP signaling in neural anteroposterior patterning.
EMBO Rep. 2019 Jun;20(6). doi: 10.15252/embr.201845842. Epub 2019 Apr 1.
8
Hindbrain induction and patterning during early vertebrate development.
Cell Mol Life Sci. 2019 Mar;76(5):941-960. doi: 10.1007/s00018-018-2974-x. Epub 2018 Dec 5.
9
patterning of pluripotent stem cell-derived intestine recapitulates human development.
Development. 2017 Mar 15;144(6):1045-1055. doi: 10.1242/dev.138453. Epub 2016 Dec 7.
10
CDX4 and retinoic acid interact to position the hindbrain-spinal cord transition.
Dev Biol. 2016 Feb 15;410(2):178-189. doi: 10.1016/j.ydbio.2015.12.025. Epub 2016 Jan 6.

本文引用的文献

1
Two phases of Hox gene regulation during early Xenopus development.
Curr Biol. 1998 May 21;8(11):673-6. doi: 10.1016/s0960-9822(98)70257-x.
2
Patterning of the embryo along the anterior-posterior axis: the role of the caudal genes.
Development. 1997 Oct;124(19):3805-14. doi: 10.1242/dev.124.19.3805.
6
Homeosis and intestinal tumours in Cdx2 mutant mice.
Nature. 1997 Mar 6;386(6620):84-7. doi: 10.1038/386084a0.
8
Eomesodermin, a key early gene in Xenopus mesoderm differentiation.
Cell. 1996 Dec 13;87(6):989-1000. doi: 10.1016/s0092-8674(00)81794-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验