Suppr超能文献

针对种族错误分类对癌症发病率进行调整。

Adjustment of cancer incidence rates for ethnic misclassification.

作者信息

Stewart S L, Swallen K C, Glaser S L, Horn-Ross P L, West D W

机构信息

Northern California Cancer Center, Union City 94587, USA.

出版信息

Biometrics. 1998 Jun;54(2):774-81.

PMID:9629656
Abstract

Although ethnic population counts measured by the United States Census are based on self-identification, the same is not necessarily true of cases reported to cancer registries. The use of different ethnic classification methods for numerators and denominators may therefore lead to biased estimates of cancer incidence rates. The extent of such misclassification may be assessed by conducting an ethnicity survey of cancer patients and estimating the proportion misclassified using double sampling models that account for sample stratification. For two ethnic categories, logistic regression may be used to model self-identified ethnicity as a function of demographic variables and the fallible classification method. Incidence rates then may be adjusted for misclassification using regression results to estimate the number of cancer cases of a given age, sex, and site in each self-identified ethnic group. An example is given using this method to estimate ethnic misclassification of San Francisco Bay area Hispanic cancer patients diagnosed in 1990. Results suggest that the number of cancer cases reported as Hispanic is an underestimate of the number of cases self-identified as Hispanic, resulting in an underestimate of Hispanic cancer rates.

摘要

尽管美国人口普查所统计的种族人口数量是基于自我认定,但向癌症登记处报告的病例情况未必如此。因此,在分子和分母中使用不同的种族分类方法可能会导致对癌症发病率的估计出现偏差。可以通过对癌症患者进行种族调查,并使用考虑样本分层的双重抽样模型来估计误分类的比例,从而评估这种误分类的程度。对于两个种族类别,可以使用逻辑回归将自我认定的种族作为人口统计学变量和易出错的分类方法的函数进行建模。然后,可以使用回归结果对发病率进行误分类调整,以估计每个自我认定种族群体中给定年龄、性别和部位的癌症病例数。本文给出了一个使用此方法估计1990年在旧金山湾区被诊断为西班牙裔的癌症患者种族误分类情况的示例。结果表明,报告为西班牙裔的癌症病例数低估了自我认定为西班牙裔的病例数,从而导致对西班牙裔癌症发病率的低估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验