Gottschalk A, Tang J, Puig O, Salgado J, Neubauer G, Colot H V, Mann M, Séraphin B, Rosbash M, Lührmann R, Fabrizio P
Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Germany.
RNA. 1998 Apr;4(4):374-93.
The U1 snRNP is essential for recognition of the pre-mRNA 5'-splice site and the subsequent assembly of the spliceosome. Yeast U1 snRNP is considerably more complex than its metazoan counterpart, which suggests possible differences between yeast and metazoa in early splicing events. We have comprehensively analyzed the composition of yeast U1 snRNPs using a combination of biochemical, mass spectrometric, and genetic methods. We demonstrate the specific association of four novel U1 snRNP proteins, Snu71p, Snu65p, Nam8p, and Snu56p, that have no known metazoan homologues. A fifth protein, Npl3p, is an abundant cellular component that reproducibly co-purifies with the U1 snRNP, but its association is salt-sensitive. Therefore, we are unable to establish conclusively whether it binds specifically to the U1 snRNP. Interestingly, Nam8p and Npl3p were previously assigned functions in (pre-m)RNA-metabolism; however, so far, no association with U1 snRNP has been demonstrated or proposed. We also show that the yeast SmB protein is a U1 snRNP component. Yeast U1 snRNP therefore contains 16 different proteins, including seven snRNP core proteins, three homologues of the metazoan U1 snRNP-specific proteins, and six yeast-specific U1 snRNP proteins. We have simultaneously continued the characterization of additional mutants isolated in a synthetic lethal (MUD) screen for genes that functionally cooperate with U1 snRNA. Consistent with the biochemical results, mud10, mud15, and mud16 are alleles of SNU56, NAM8, and SNU65, respectively. mud10 and mud15 affect the in vivo splicing efficiency of noncanonical introns. Moreover, mud10p strongly affects the in vitro formation of splicing complexes, and extracts from the mud15 strain contain a U1 snRNP that migrates aberrantly on native gels. Finally, we show that Nam8p/Mud15p contributes to the stability of U1 snRNP.
U1 小核核糖核蛋白颗粒(snRNP)对于前体 mRNA 5'-剪接位点的识别以及随后剪接体的组装至关重要。酵母 U1 snRNP 比其后生动物对应物要复杂得多,这表明酵母和后生动物在早期剪接事件中可能存在差异。我们使用生化、质谱和遗传方法相结合的方式,全面分析了酵母 U1 snRNP 的组成。我们证明了四种新型 U1 snRNP 蛋白 Snu71p、Snu65p、Nam8p 和 Snu56p 的特异性关联,这些蛋白在已知后生动物中没有同源物。第五种蛋白 Npl3p 是一种丰富的细胞成分,可重复性地与 U1 snRNP 共纯化,但其关联对盐敏感。因此,我们无法最终确定它是否特异性结合 U1 snRNP。有趣的是,Nam8p 和 Npl3p 先前被赋予了在(前体)RNA 代谢中的功能;然而,到目前为止,尚未证明或提出它们与 U1 snRNP 有关联。我们还表明酵母 SmB 蛋白是 U1 snRNP 的一个组成部分。因此,酵母 U1 snRNP 包含 16 种不同的蛋白质,包括七种 snRNP 核心蛋白、三种后生动物 U1 snRNP 特异性蛋白的同源物以及六种酵母特异性 U1 snRNP 蛋白。我们同时继续对在与 U1 snRNA 功能协作的基因的合成致死(MUD)筛选中分离出的其他突变体进行表征。与生化结果一致,mud10、mud15 和 mud16 分别是 SNU56、NAM8 和 SNU65 的等位基因。mud10 和 mud15 影响非经典内含子的体内剪接效率。此外,mud10p 强烈影响剪接复合物的体外形成,并且 mud15 菌株的提取物含有在天然凝胶上迁移异常的 U1 snRNP。最后,我们表明 Nam8p/Mud15p 有助于 U1 snRNP 的稳定性。