Suppr超能文献

Novel fluorescence membrane fusion assays reveal GTP-dependent fusogenic properties of outer mitochondrial membrane-derived proteins.

作者信息

Cortese J D, Voglino L A, Hackenbrock C R

机构信息

Department of Cell Biology and Anatomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7090, USA.

出版信息

Biochim Biophys Acta. 1998 May 28;1371(2):185-98. doi: 10.1016/s0005-2736(97)00266-6.

Abstract

We have shown that fusion of small unilamellar vesicles (SUV) with outer mitochondrial membranes occurs at physiological pH [Cortese et al., 1991, J. Cell Biol., Vol. 113, 1331-1340]. The proteins driving this process could be involved in mitochondrial membrane fusion, which is presently poorly understood. In this study, we release from rat liver mitochondria a soluble protein fraction (SF) that increases fusion at neutral pH measured by membrane fusion assays (MFAs). Since this fusogenic activity was specifically enhanced by GTP, we separate SF by GTP affinity chromatography into: i) a flow-through subfraction (G1) containing numerous proteins with low GTP affinity; and ii) a subfraction (G2) which may contain GTP-binding proteins. A novel array of MFAs is developed to study the fusogenic properties of these fractions, measuring the merging of membranes (membrane-mixing) or the mixing of intravesicular aqueous contents (content-mixing). The MFAs use: a) SUV/large unilamellar vesicles, lacking mitochondrial membranes; b) SUV/mitochondria, reconstituting membrane-mitochondrial interactions; and c) mitochondria/mitochondria, mimicking mitochondrial fusion. The results indicate that: i) G1 contains GTP-independent, in vitro fusogenic proteins that are not sufficient to induce mitochondrial fusion; and ii) G2 contains GTP-dependent proteins that stimulate mitochondrial fusion at neutral pH. The MFAs described here could be used to monitor the isolation of active proteins from these subfractions and to define the mechanism of intermitochondrial membrane fusion.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验