Suppr超能文献

水稻黑条矮缩斐济病毒S7、S8、S9和S10编码蛋白的检测与鉴定

Detection and assignment of proteins encoded by rice black streaked dwarf fijivirus S7, S8, S9 and S10.

作者信息

Isogai M, Uyeda I, Lee B C

机构信息

Department of Agrobiology and Bioresources, Faculty of Agriculture, Hokkaido University, Sapporo, Japan.

出版信息

J Gen Virol. 1998 Jun;79 ( Pt 6):1487-94. doi: 10.1099/0022-1317-79-6-1487.

Abstract

The proteins encoded by rice black streaked dwarf fijivirus (RBSDV) genomic segments 7-10 (S7-S10) were characterized. Open reading frames (ORFs) from these segments were expressed as fusion proteins in Escherichia coli. Antibodies raised against the expressed products were used as probes to determine whether the viral ORFs encode structural proteins. In Western blots, antibodies to the expressed S8 and S10 products reacted with a core capsid (65 kDa) and a major outer capsid (56 kDa) protein, respectively, while none of the antibodies to S7 and S9 products reacted with structural proteins. Antisera to RBSDV S7 ORF1 and S9 ORF1 each detected a single protein of the predicted size in total protein extracts from infected rice plants and viruliferous Laodelphax striatellus. Immunoelectron microscopy revealed that antibodies to RBSDV S7 ORF1 and RBSDV S9 ORF1 reacted with tubular structures and viroplasm, respectively, in sections of both infected maize plants and viruliferous L. striatellus. Antisera to ORF2 of S7 and S9 failed to detect any proteins in the infected tissue using either Western blotting or immuno-electron microscopic techniques.

摘要

对水稻黑条矮缩斐济病毒(RBSDV)基因组片段7至10(S7 - S10)编码的蛋白质进行了特性分析。这些片段的开放阅读框(ORF)在大肠杆菌中表达为融合蛋白。针对表达产物产生的抗体用作探针,以确定病毒ORF是否编码结构蛋白。在蛋白质免疫印迹中,针对表达的S8和S10产物的抗体分别与一种核心衣壳(65 kDa)和一种主要外衣壳(56 kDa)蛋白发生反应,而针对S7和S9产物的抗体均未与结构蛋白发生反应。针对RBSDV S7 ORF1和S9 ORF1的抗血清在来自受感染水稻植株和带毒灰飞虱的总蛋白提取物中各自检测到一种预测大小的单一蛋白质。免疫电子显微镜显示,针对RBSDV S7 ORF1和RBSDV S9 ORF1的抗体分别与受感染玉米植株和带毒灰飞虱切片中的管状结构和病毒质发生反应。针对S7和S9的ORF2的抗血清使用蛋白质免疫印迹或免疫电子显微镜技术均未在受感染组织中检测到任何蛋白质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验