Strausberg S L, Alexander P A, Gallagher D T, Gilliland G L, Barnett B L, Bryan P N
Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA.
Biotechnology (N Y). 1995 Jul;13(7):669-73. doi: 10.1038/nbt0795-669.
Extracellular proteases of the subtilisin-class depend upon calcium for stability. Calcium binding stabilizes these proteins in natural extracellular environments, but is an Achilles' heel in industrial environments which contain high concentrations of metal chelators. Here we direct the evolution of calcium-independent stability in subtilisin BPN'. By deleting the calcium binding loop from subtilisin, we initially destabilize the protein but create the potential to use new structural solutions for stabilization. Analysis of the structure and stability of the loop-deleted prototype followed by directed mutagenesis and selection for increased stability resulted in a subtilisin mutant with native-like proteolytic activity but 1000-times greater stability in strongly chelating conditions.
枯草杆菌蛋白酶类的细胞外蛋白酶的稳定性依赖于钙。在天然细胞外环境中,钙结合可使这些蛋白质稳定,但在含有高浓度金属螯合剂的工业环境中,这却是一个致命弱点。在此,我们引导枯草杆菌蛋白酶BPN' 进化出不依赖钙的稳定性。通过从枯草杆菌蛋白酶中删除钙结合环,我们最初使该蛋白质不稳定,但创造了利用新的结构解决方案来实现稳定的可能性。对缺失环的原型进行结构和稳定性分析,随后进行定向诱变并选择提高稳定性的突变体,最终得到了一个具有类似天然蛋白水解活性,但在强螯合条件下稳定性提高了1000倍的枯草杆菌蛋白酶突变体。