Rouzina I, Bloomfield V A
Department of Biochemistry, University of Minnesota, St. Paul 55108, USA.
Biophys J. 1998 Jun;74(6):3152-64. doi: 10.1016/S0006-3495(98)78021-X.
We propose a purely electrostatic mechanism by which small, mobile, multivalent cations can induce DNA bending. A multivalent cation binds at the entrance to the B-DNA major groove, between the two phosphate strands, electrostatically repelling sodium counterions from the neighboring phosphates. The unscreened phosphates on both strands are strongly attracted to the groove-bound cation. This leads to groove closure, accompanied by DNA bending toward the cationic ligand. We explicitly treat the dynamic character of the cation-DNA interaction using an adiabatic approximation, noting that DNA bending is much slower than the diffusion of nonspecifically bound, mobile cations. We make semiquantitative estimates of the free energy components of bending-electrostatic (with a sigmoidal distance-dependent dielectric function), elastic, and entropic cation localization-and find that the equilibrium state is bent B-DNA stabilized with a self-localized cation. This is a bending polaron, formation of which should be critically dependent on the strength of electrostatic interaction and the concentration of highly mobile cations available for self-localization. We predict that the resultant bend will be large (approximately 20-40 degrees), smooth (because it is spread over 6 bp), and infrequent. The stability of such a bend can be variable, from transient to highly stable (static) bending, observable with standard curvature-measuring techniques. We further predict that this bending mechanism will have an unusual sequence dependence: sequences with less binding specificity will be more bent, unless the specific binding site is in the major groove.
我们提出了一种纯静电机制,通过该机制,小的、可移动的多价阳离子可诱导DNA弯曲。多价阳离子结合在B-DNA大沟的入口处,位于两条磷酸链之间,通过静电作用排斥相邻磷酸基团上的钠离子。两条链上未被屏蔽的磷酸基团被强烈吸引到结合在沟内的阳离子上。这导致沟闭合,同时DNA向阳离子配体弯曲。我们使用绝热近似明确处理阳离子-DNA相互作用的动态特性,注意到DNA弯曲比非特异性结合的可移动阳离子的扩散慢得多。我们对弯曲静电(具有依赖于距离的S形介电函数)、弹性和阳离子定位熵的自由能成分进行了半定量估计,发现平衡态是由自定位阳离子稳定的弯曲B-DNA。这是一个弯曲极化子,其形成应该严重依赖于静电相互作用的强度和可用于自定位的高移动性阳离子的浓度。我们预测,产生的弯曲将很大(约20-40度)、平滑(因为它分布在6个碱基对上)且不常见。这种弯曲的稳定性可以是可变的,从短暂到高度稳定(静态)弯曲,可通过标准曲率测量技术观察到。我们进一步预测,这种弯曲机制将具有不寻常的序列依赖性:结合特异性较低的序列将更弯曲,除非特异性结合位点在大沟中。