Michel H, Behr J, Harrenga A, Kannt A
Max-Planck-Institut für Biophysik, Frankfurt/Main, Germany.
Annu Rev Biophys Biomol Struct. 1998;27:329-56. doi: 10.1146/annurev.biophys.27.1.329.
Cytochrome c oxidase, the terminal enzyme of the respiratory chains of mitochondria and aerobic bacteria, catalyzes electron transfer from cytochrome c to molecular oxygen, reducing the latter to water. Electron transfer is coupled to proton translocation across the membrane, resulting in a proton and charge gradient that is then employed by the F0F1-ATPase to synthesize ATP. Over the last years, substantial progress has been made in our understanding of the structure and function of this enzyme. Spectroscopic techniques such as EPR, absorbance and resonance Raman spectroscopy, in combination with site-directed mutagenesis work, have been successfully applied to elucidate the nature of the cofactors and their ligands, to identify key residues involved in proton transfer, and to gain insight into the catalytic cycle and the structures of its intermediates. Recently, the crystal structures of a bacterial and a mitochondrial cytochrome c oxidase have been determined. In this review, we provide an overview of the crystal structures, summarize recent spectroscopic work, and combine structural and spectroscopic data in discussing mechanistic aspects of the enzyme. For the latter, we focus on the structure of the oxygen intermediates, proton-transfer pathways, and the much-debated issue of how electron transfer in the enzyme might be coupled to proton translocation.
细胞色素c氧化酶是线粒体和需氧细菌呼吸链的末端酶,催化电子从细胞色素c传递给分子氧,将后者还原为水。电子传递与质子跨膜转运相偶联,产生质子和电荷梯度,然后F0F1 - ATP合酶利用该梯度合成ATP。在过去几年中,我们对这种酶的结构和功能的理解取得了重大进展。诸如电子顺磁共振(EPR)、吸光度和共振拉曼光谱等光谱技术,与定点诱变工作相结合,已成功用于阐明辅因子及其配体的性质,确定参与质子转移的关键残基,并深入了解催化循环及其中间体的结构。最近,已确定了一种细菌和一种线粒体细胞色素c氧化酶的晶体结构。在本综述中,我们概述了晶体结构,总结了最近的光谱学研究工作,并结合结构和光谱学数据讨论该酶的作用机制。对于后者,我们重点关注氧中间体的结构、质子转移途径,以及该酶中电子传递如何与质子转运相偶联这一备受争议的问题。