Suppr超能文献

模拟生物分子中的能量流动:应用于金枪鱼细胞色素c。

Simulating energy flow in biomolecules: application to tuna cytochrome c.

作者信息

Wang Q, Wong C F, Rabitz H

机构信息

Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.

出版信息

Biophys J. 1998 Jul;75(1):60-9. doi: 10.1016/S0006-3495(98)77495-8.

Abstract

By constructing a continuity equation of energy flow, one can utilize results from a molecular dynamics simulation to calculate the energy flux or flow in different parts of a biomolecule. Such calculations can yield useful insights into the pathways of energy flow in biomolecules. The method was first tested on a small system of a cluster of 13 argon atoms and then applied to the study of the pathways of energy flow after a tuna ferrocytochrome c molecule was oxidized. Initially, energy propagated faster along the direction perpendicular to the heme plane. This was due to an efficient through-bond mechanism, because the heme iron in cytochrome c was covalently bonded to a cysteine and a histidine. For the oxidation of cytochrome c, electrostatic interactions also facilitated a long-range through-space mechanism of energy flow. As a result, polar or charged groups that were further away from the oxidation site could receive energy earlier than nonpolar groups closer to the site. Another bridging mechanism facilitating efficient long-range responses to cytochrome c oxidation involved the coupling of far-off atoms with atoms that were nearer to, and interacted directly with, the oxidation site. The different characteristics of these energy transfer mechanisms defied a simple correlation between the time that the excess energy of the oxidation site first dissipated to an atom and the distance of the atom from the oxidation site. For tuna cytochrome c, all of the atoms of the protein had sensed the effects of the oxidation within approximately 40 fs. For the length scale of energy transfer considered in this study, the speed of the energy propagation in the protein was on the order of 10(5) m/s.

摘要

通过构建能量流连续性方程,人们可以利用分子动力学模拟的结果来计算生物分子不同部分的能量通量或流量。这样的计算能够为生物分子中的能量流途径提供有用的见解。该方法首先在一个由13个氩原子组成的小团簇系统上进行测试,然后应用于研究金枪鱼亚铁细胞色素c分子氧化后的能量流途径。最初,能量沿着垂直于血红素平面的方向传播得更快。这是由于一种有效的键间机制,因为细胞色素c中的血红素铁与一个半胱氨酸和一个组氨酸共价结合。对于细胞色素c的氧化,静电相互作用也促进了一种远程的空间能量流机制。结果,远离氧化位点的极性或带电基团比靠近该位点的非极性基团更早接收到能量。另一种促进对细胞色素c氧化产生有效远程响应的桥连机制涉及远处原子与更靠近氧化位点并与之直接相互作用的原子的耦合。这些能量转移机制的不同特性使得氧化位点多余能量首次耗散到一个原子的时间与该原子到氧化位点的距离之间不存在简单的相关性。对于金枪鱼细胞色素c,蛋白质的所有原子在大约40飞秒内都感受到了氧化的影响。对于本研究中考虑的能量转移长度尺度,蛋白质中能量传播的速度约为10⁵米/秒。

相似文献

4
Folding of horse cytochrome c in the reduced state.还原态马细胞色素c的折叠
J Mol Biol. 2001 Oct 5;312(5):1135-60. doi: 10.1006/jmbi.2001.4993.
9
Redox conformation changes in refined tuna cytochrome c.精制金枪鱼细胞色素c中的氧化还原构象变化
Proc Natl Acad Sci U S A. 1980 Nov;77(11):6371-5. doi: 10.1073/pnas.77.11.6371.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验