Suppr超能文献

细胞膜因电应力和机械应力而破裂。

The breakdown of cell membranes by electrical and mechanical stress.

作者信息

Akinlaja J, Sachs F

机构信息

Department of Physics, State University of New York, Buffalo, New York 14214, USA.

出版信息

Biophys J. 1998 Jul;75(1):247-54. doi: 10.1016/S0006-3495(98)77511-3.

Abstract

We attempted to determine whether mechanical tension and electrical stress couple to cause membrane breakdown in cells. Using cell-attached patches from HEK293 cells, we estimated the mechanically produced tension from the applied pressure and geometry of the patch. Voltage pulses of increasing amplitude were applied until we observed a sudden increase in conductance and capacitance. For pulses of 50 micros duration, breakdown required >0.5 V and was dependent on the tension. For pulses of 50-100 ms duration, breakdown required 0.2-0.4 V and was independent of tension. Apparently two physically different processes can lead to membrane breakdown. We could explain the response to the short, high-voltage pulses if breakdown occurred in the lipid bilayer. The critical electromechanical energy per unit area for breakdown by short pulses was approximately 4 dyne/cm, in agreement with earlier results on bilayers. Our data suggest that, at least in a patch, the bilayer may hold a significant fraction (approximately 40%) of the mean tension. To be compatible with the large, nonlytic area changes of patches, the bilayer appears to be pulled toward the pipette tip, perhaps by hydrophobic forces wetting membrane proteins bound to the glass. Although breakdown voltages for long pulses were in agreement with earlier work on algae, the mechanism(s) for this breakdown remain unclear.

摘要

我们试图确定机械张力和电应力是否相互耦合导致细胞中的膜破裂。使用来自HEK293细胞的细胞贴附膜片,我们根据施加的压力和膜片的几何形状估算机械产生的张力。施加幅度逐渐增加的电压脉冲,直到我们观察到电导和电容突然增加。对于持续时间为50微秒的脉冲,破裂需要>0.5伏,并且取决于张力。对于持续时间为50 - 100毫秒的脉冲,破裂需要0.2 - 0.4伏,并且与张力无关。显然,两个物理上不同的过程可导致膜破裂。如果在脂质双层中发生破裂,我们可以解释对短的高压脉冲的响应。短脉冲导致破裂的每单位面积的临界机电能量约为4达因/厘米,与早期关于双层的结果一致。我们的数据表明,至少在一个膜片中,双层可能承受平均张力的很大一部分(约40%)。为了与膜片的大的非裂解面积变化相兼容,双层似乎被拉向移液器尖端,可能是通过润湿与玻璃结合的膜蛋白的疏水作用力。尽管长脉冲的破裂电压与早期关于藻类的研究结果一致,但这种破裂的机制仍不清楚。

相似文献

1
The breakdown of cell membranes by electrical and mechanical stress.
Biophys J. 1998 Jul;75(1):247-54. doi: 10.1016/S0006-3495(98)77511-3.
2
The electrical breakdown of cell and lipid membranes: the similarity of phenomenologies.
Biochim Biophys Acta. 1987 Sep 3;902(3):360-73. doi: 10.1016/0005-2736(87)90204-5.
3
Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study.
J Membr Biol. 1979 Jul 16;48(2):181-204. doi: 10.1007/BF01872858.
4
Resealing dynamics of a cell membrane after electroporation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Dec;66(6 Pt 1):062905. doi: 10.1103/PhysRevE.66.062905. Epub 2002 Dec 26.
5
Determination of the lipid bilayer breakdown voltage by means of linear rising signal.
Bioelectrochemistry. 2007 Jan;70(1):23-7. doi: 10.1016/j.bioelechem.2006.03.022. Epub 2006 Apr 5.
6
Kinetics of pore size during irreversible electrical breakdown of lipid bilayer membranes.
Biophys J. 1993 Jan;64(1):121-8. doi: 10.1016/S0006-3495(93)81346-8.
7
Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility.
Biophys J. 1989 May;55(5):1001-9. doi: 10.1016/S0006-3495(89)82898-X.
8
Characterization of single-cell electroporation by using patch-clamp and fluorescence microscopy.
Biophys J. 2000 Oct;79(4):1993-2001. doi: 10.1016/S0006-3495(00)76447-2.
9
On the effect of prestin on the electrical breakdown of cell membranes.
Biophys J. 2006 Feb 1;90(3):967-74. doi: 10.1529/biophysj.105.064105. Epub 2005 Nov 18.
10
Effect of stress on the membrane capacitance of the auditory outer hair cell.
Biophys J. 1993 Jul;65(1):492-8. doi: 10.1016/S0006-3495(93)81053-1.

引用本文的文献

1
Ultrasound-Mediated Membrane Modulation for Biomedical Applications.
Nanomaterials (Basel). 2025 Jun 7;15(12):884. doi: 10.3390/nano15120884.
2
Mechanosensitive Ion Channels: The Unending Riddle of Mechanotransduction.
Bioelectricity. 2025 Mar 18;7(1):58-70. doi: 10.1089/bioe.2024.0028. eCollection 2025 Mar.
3
Long-term outcomes of electrocoagulation versus radiofrequency thermoablation for varicose veins.
J Vasc Surg Venous Lymphat Disord. 2025 Sep;13(5):102245. doi: 10.1016/j.jvsv.2025.102245. Epub 2025 Apr 8.
4
Programmable Lipid Bilayer Tension-Control Apparatus for Quantitative Mechanobiology.
ACS Nano. 2024 Nov 5;18(44):30561-30573. doi: 10.1021/acsnano.4c09017. Epub 2024 Oct 22.
5
An Infrared Nanospectroscopy Technique for the Study of Electric-Field-Induced Molecular Dynamics.
Nano Lett. 2024 Aug 14;24(32):9808-9815. doi: 10.1021/acs.nanolett.4c01387. Epub 2024 Aug 1.
6
Tissue Ablation: Applications and Perspectives.
Adv Mater. 2024 Aug;36(32):e2310856. doi: 10.1002/adma.202310856. Epub 2024 Jun 6.
8
M-TUBE enables large-volume bacterial gene delivery using a high-throughput microfluidic electroporation platform.
PLoS Biol. 2022 Sep 6;20(9):e3001727. doi: 10.1371/journal.pbio.3001727. eCollection 2022 Sep.
9
Irreversible Electroporation: Background, Theory, and Review of Recent Developments in Clinical Oncology.
Bioelectricity. 2019 Dec 1;1(4):214-234. doi: 10.1089/bioe.2019.0029. Epub 2019 Dec 12.
10
Imaging FCS delineates subtle heterogeneity in plasma membranes of resting mast cells.
Mol Biol Cell. 2020 Mar 19;31(7):709-723. doi: 10.1091/mbc.E19-10-0559. Epub 2020 Jan 2.

本文引用的文献

1
A microstructural approach to cytoskeletal mechanics based on tensegrity.
J Theor Biol. 1996 Jul 21;181(2):125-36. doi: 10.1006/jtbi.1996.0120.
2
Voltage dependence of mouse acetylcholine receptor gating: different charge movements in di-, mono- and unliganded receptors.
J Physiol. 1996 Jul 1;494 ( Pt 1)(Pt 1):155-70. doi: 10.1113/jphysiol.1996.sp021482.
3
Cell cycle-dependence of HL-60 cell deformability.
Biophys J. 1996 Apr;70(4):2023-9. doi: 10.1016/S0006-3495(96)79768-0.
4
Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry.
Biochem Cell Biol. 1995 Jul-Aug;73(7-8):327-35. doi: 10.1139/o95-041.
5
Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis.
J Biomech. 1995 Dec;28(12):1471-84. doi: 10.1016/0021-9290(95)00095-x.
9
Lipid-glass adhesion in giga-sealed patch-clamped membranes.
Biophys J. 1994 Jan;66(1):75-9. doi: 10.1016/S0006-3495(94)80752-0.
10
Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension.
Biophys J. 1994 Jun;66(6):2181-9. doi: 10.1016/S0006-3495(94)81014-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验