Suppr超能文献

基于张拉整体结构的细胞骨架力学微观结构研究方法。

A microstructural approach to cytoskeletal mechanics based on tensegrity.

作者信息

Stamenović D, Fredberg J J, Wang N, Butler J P, Ingber D E

机构信息

Department of Biomedical Engineering, Boston University, MA 02215, USA.

出版信息

J Theor Biol. 1996 Jul 21;181(2):125-36. doi: 10.1006/jtbi.1996.0120.

Abstract

Mechanical properties of living cells are commonly described in terms of the laws of continuum mechanics. The purpose of this report is to consider the implications of an alternative approach that emphasizes the discrete nature of stress bearing elements in the cell and is based on the known structural properties of the cytoskeleton. We have noted previously that tensegrity architecture seems to capture essential qualitative features of cytoskeletal shape distortion in adherent cells (Ingber, 1993a; Wang et al., 1993). Here we extend those qualitative notions into a formal microstructural analysis. On the basis of that analysis we attempt to identify unifying principles that might underlie the shape stability of the cytoskeleton. For simplicity, we focus on a tensegrity structure containing six rigid struts interconnected by 24 linearly elastic cables. Cables carry initial tension ("prestress") counterbalanced by compression of struts. Two cases of interconnectedness between cables and struts are considered: one where they are connected by pin-joints, and the other where the cables run through frictionless loops at the junctions. At the molecular level, the pinned structure may represent the case in which different cytoskeletal filaments are cross-linked whereas the looped structure represents the case where they are free to slip past one another. The system is then subjected to uniaxial stretching. Using the principal of virtual work, stretching force vs. extension and structural stiffness vs. stretching force relationships are calculated for different prestresses. The stiffness is found to increase with increasing prestress and, at a given prestress, to increase approximately linearly with increasing stretching force. This behavior is consistent with observations in living endothelial cells exposed to shear stresses (Wang & Ingber, 1994). At a given prestress, the pinned structure is found to be stiffer than the looped one, a result consistent with data on mechanical behavior of isolated, cross-linked and uncross-linked actin networks (Wachsstock et al., 1993). On the basis of our analysis we concluded that architecture and the prestress of the cytoskeleton might be key features that underlie a cell's ability to regulate its shape.

摘要

活细胞的力学特性通常根据连续介质力学定律来描述。本报告的目的是探讨一种替代方法的意义,该方法强调细胞中应力承载元件的离散性质,并基于细胞骨架已知的结构特性。我们之前已经指出,张拉整体结构似乎捕捉到了贴壁细胞中细胞骨架形状变形的基本定性特征(英格伯,1993a;王等人,1993)。在此,我们将这些定性概念扩展为正式的微观结构分析。基于该分析,我们试图确定可能构成细胞骨架形状稳定性基础的统一原则。为简单起见,我们专注于一个由24根线性弹性电缆相互连接的包含六个刚性支柱的张拉整体结构。电缆承受由支柱压缩平衡的初始张力(“预应力”)。考虑了电缆和支柱之间的两种连接情况:一种是它们通过销连接,另一种是电缆在连接处穿过无摩擦环。在分子水平上,销连接结构可能代表不同细胞骨架细丝交联的情况,而环连接结构代表它们可以彼此自由滑动的情况。然后对该系统进行单轴拉伸。使用虚功原理,计算了不同预应力下的拉伸力与伸长关系以及结构刚度与拉伸力关系。发现刚度随着预应力的增加而增加,并且在给定预应力下,随着拉伸力的增加近似线性增加。这种行为与暴露于剪切应力的活内皮细胞中的观察结果一致(王和英格伯,1994)。在给定预应力下,发现销连接结构比环连接结构更硬,这一结果与关于分离的、交联和未交联肌动蛋白网络力学行为的数据一致(瓦克斯斯托克等人,1993)。基于我们的分析,我们得出结论,细胞骨架的结构和预应力可能是构成细胞调节其形状能力基础的关键特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验