Suppr超能文献

sud1(+)将细胞周期蛋白依赖性激酶磷酸化的Cdc18和Rum1蛋白作为降解目标,并阻止裂殖酵母中不必要的二倍体化。

sud1(+) targets cyclin-dependent kinase-phosphorylated Cdc18 and Rum1 proteins for degradation and stops unwanted diploidization in fission yeast.

作者信息

Jallepalli P V, Tien D, Kelly T J

机构信息

Department of Molecular Biology and Genetics, 725 North Wolfe Street, 601 Pre-Clinical Teaching Building, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

出版信息

Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8159-64. doi: 10.1073/pnas.95.14.8159.

Abstract

In the fission yeast Schizosaccharomyces pombe, S phase is limited to a single round per cell cycle through cyclin-dependent kinase phosphorylation of critical replication factors, including the Cdc18 replication initiator protein. Because defects in Cdc18 phosphorylation lead to a hyperstable and hyperactive form of Cdc18 that promotes high levels of overreplication in vivo, we wished to identify the components of the Cdc18 proteolysis pathway in fission yeast. In this paper we describe one such component, encoded by the sud1(+) gene. sud1(+) shares homology with the budding yeast CDC4 gene and is required to prevent spontaneous re-replication in fission yeast. Cells lacking sud1(+) accumulate high levels of Cdc18 and the CDK inhibitor Rum1, because they cannot degrade these two key cell cycle regulators. Through genetic analysis we show that hyperaccumulation of Rum1 contributes to re-replication in Deltasud1 cells, but is not the cause of the defect in Cdc18 proteolysis. Rather, Sud1 itself is associated with the ubiquitin pathway in fission yeast and binds to Cdc18 in vivo. Most importantly, Sud1-Cdc18 binding requires prior phosphorylation of the Cdc18 polypeptide at CDK consensus sites. These results provide a biochemical mechanism for the phosphorylation-dependent degradation of Cdc18 and other cell cycle regulators, including Rum1. Evolutionary conservation of the Sud1/CDC4 pathway suggests that phosphorylation-coupled proteolysis may be a general feature of nearly all eukaryotic cell cycles.

摘要

在裂殖酵母粟酒裂殖酵母中,S期在每个细胞周期中被限制为一轮,这是通过关键复制因子(包括Cdc18复制起始蛋白)的细胞周期蛋白依赖性激酶磷酸化来实现的。由于Cdc18磷酸化缺陷会导致Cdc18形成超稳定和高活性形式,从而在体内促进高水平的过度复制,因此我们希望鉴定裂殖酵母中Cdc18蛋白水解途径的组成成分。在本文中,我们描述了一个这样的组成成分,由sud1(+)基因编码。sud1(+)与芽殖酵母的CDC4基因具有同源性,是防止裂殖酵母自发再复制所必需的。缺乏sud1(+)的细胞会积累高水平的Cdc18和CDK抑制剂Rum1,因为它们无法降解这两种关键的细胞周期调节因子。通过遗传分析,我们表明Rum1的过度积累促成了Δsud1细胞中的再复制,但不是Cdc18蛋白水解缺陷的原因。相反,Sud1本身与裂殖酵母中的泛素途径相关,并在体内与Cdc18结合。最重要的是,Sud1与Cdc18的结合需要Cdc18多肽在CDK共有位点预先磷酸化。这些结果为Cdc18和其他细胞周期调节因子(包括Rum1)的磷酸化依赖性降解提供了一种生化机制。Sud1/CDC4途径的进化保守性表明,磷酸化偶联的蛋白水解可能是几乎所有真核细胞周期的一个普遍特征。

相似文献

5
Redundant control of rereplication in fission yeast.裂殖酵母中再复制的冗余控制。
Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13114-9. doi: 10.1073/pnas.221467598. Epub 2001 Oct 23.

引用本文的文献

1
Trade-off and flexibility in the dynamic regulation of the cullin-RING ubiquitin ligase repertoire.泛素连接酶库动态调控中的权衡与灵活性
PLoS Comput Biol. 2017 Nov 17;13(11):e1005869. doi: 10.1371/journal.pcbi.1005869. eCollection 2017 Nov.
3
Regulating DNA replication in eukarya.真核生物中 DNA 复制的调控。
Cold Spring Harb Perspect Biol. 2013 Sep 1;5(9):a012930. doi: 10.1101/cshperspect.a012930.
9
Lessons from fungal F-box proteins.来自真菌F-box蛋白的经验教训。
Eukaryot Cell. 2009 May;8(5):677-95. doi: 10.1128/EC.00386-08. Epub 2009 Mar 13.
10
Cdc7-Dbf4 and the human S checkpoint response to UVC.Cdc7-Dbf4与人类对紫外线C的S期检查点反应
J Biol Chem. 2007 Mar 30;282(13):9458-9468. doi: 10.1074/jbc.M611292200. Epub 2007 Feb 2.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验