Andrews M T, Squire T L, Bowen C M, Rollins M B
Department of Genetics, North Carolina State University, Raleigh, NC 27695-7614, USA.
Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8392-7. doi: 10.1073/pnas.95.14.8392.
Hibernation is a physiological adaptation characterized by dramatic decreases in heart rate, body temperature, and metabolism, resulting in long-term dormancy. Hibernating mammals survive for periods up to 6 mo in the absence of food by minimizing carbohydrate catabolism and using triglyceride stores as their primary source of fuel. The cellular and molecular mechanisms underlying the changes from a state of activity to the hibernating state are poorly understood; however, the selective expression of genes offers one level of control. To address this problem, we used a differential gene expression screen to identify genes that are responsible for the physiological characteristics of hibernation in the heart of the thirteen-lined ground squirrel (Spermophilus tridecemlineatus). Here, we report that genes for pancreatic lipase and pyruvate dehydrogenase kinase isozyme 4 are up-regulated in the heart during hibernation. Pancreatic lipase is normally expressed exclusively in the pancreas, but when expressed in the hibernating heart it liberates fatty acids from triglycerides at temperatures as low as 0 degreesC. Pyruvate dehydrogenase kinase isozyme 4 inhibits carbohydrate oxidation and depresses metabolism by preventing the conversion of pyruvate to Ac-CoA. The resulting anaerobic glycolysis and low-temperature lipid catabolism provide evidence that adaptive changes in cardiac physiology are controlled by the differential expression of genes during hibernation.
冬眠是一种生理适应,其特征是心率、体温和新陈代谢显著下降,从而导致长期休眠。冬眠的哺乳动物在没有食物的情况下可存活长达6个月,它们通过尽量减少碳水化合物分解代谢,并将甘油三酯储备作为主要燃料来源来实现这一点。从活跃状态转变为冬眠状态背后的细胞和分子机制目前了解甚少;然而,基因的选择性表达提供了一种控制水平。为了解决这个问题,我们使用差异基因表达筛选来鉴定负责十三条纹地松鼠(Spermophilus tridecemlineatus)心脏冬眠生理特征的基因。在此,我们报告胰腺脂肪酶和丙酮酸脱氢酶激酶同工酶4的基因在冬眠期间的心脏中上调。胰腺脂肪酶通常仅在胰腺中表达,但在冬眠心脏中表达时,它能在低至0摄氏度的温度下从甘油三酯中释放脂肪酸。丙酮酸脱氢酶激酶同工酶4通过阻止丙酮酸转化为乙酰辅酶A来抑制碳水化合物氧化并降低新陈代谢。由此产生的无氧糖酵解和低温脂质分解代谢提供了证据,表明冬眠期间心脏生理的适应性变化是由基因的差异表达控制的。