Suppr超能文献

预防火鸡尖峰死亡率的干预决策模型。

Intervention decision model to prevent spiking mortality of turkeys.

作者信息

Vukina T, Barnes H J, Solakoglu M N

机构信息

Department of Agricultural and Resource Economics, College of Agriculture and Life Sciences, North Carolina State University, Raleigh 27695, USA.

出版信息

Poult Sci. 1998 Jul;77(7):950-5. doi: 10.1093/ps/77.7.950.

Abstract

Based on the daily records on turkeys' mortalities for the series of flocks placed on different farms in a relatively compact geographical area for the period of approximately 2 yr and other relevant explanatory variables, the goal of the research was to design a decision model to determine whether or not to use the fluorquinolone antibiotic, sarafloxacin, to prevent spiking mortality of turkeys. The core of the designed decision model is the forecasting model that attempts to ex-ante predict the cumulative flock mortality for the period between 8 and 28 d of age. Forecasts were generated with the parameters of the linear regression model where continuous values of daily mortalities served as a dependent variable. The decision variable is a binary (yes/no) choice variable, where "yes" means "go ahead with treatment" and "no" means "do nothing". If the predicted cumulative mortality for the period between 8 and 28 d of age exceeds 9% of the total initial placement, the model generates a "yes" signal. If the predicted cumulative mortality for the same period is below 9% of the total initial placement, the model generates a "no" signal. The results indicate a reasonable accuracy of the prediction model where the number of correct prediction increases and the number of incorrect predictions falls very fast as the forecasting window shortens. The intervention decision model could help veterinarians in making decisions on whether or not to treat the suspect flocks.

摘要

基于对在大约两年时间内放置在相对紧凑地理区域内不同农场的一系列火鸡群的每日死亡率记录以及其他相关解释变量,本研究的目标是设计一个决策模型,以确定是否使用氟喹诺酮抗生素沙拉沙星来预防火鸡的突发死亡。所设计决策模型的核心是预测模型,该模型试图事前预测8至28日龄期间的累计鸡群死亡率。预测是通过线性回归模型的参数生成的,其中每日死亡率的连续值作为因变量。决策变量是一个二元(是/否)选择变量,其中“是”表示“进行治疗”,“否”表示“不采取任何措施”。如果8至28日龄期间预测的累计死亡率超过初始存栏总数的9%,模型会生成“是”信号。如果同一时期预测的累计死亡率低于初始存栏总数的9%,模型会生成“否”信号。结果表明预测模型具有合理的准确性,随着预测窗口缩短,正确预测的数量增加,错误预测的数量迅速下降。干预决策模型可以帮助兽医决定是否对疑似鸡群进行治疗。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验