Doebler Philipp, Holling Heinz
Institut für Psychologie, Westfälische Wilhelms-Universität, Fliednerstr. 21, 48149 , Münster, Germany.
Psychometrika. 2015 Dec;80(4):1084-104. doi: 10.1007/s11336-014-9430-0. Epub 2014 Nov 1.
Many screening tests dichotomize a measurement to classify subjects. Typically a cut-off value is chosen in a way that allows identification of an acceptable number of cases relative to a reference procedure, but does not produce too many false positives at the same time. Thus for the same sample many pairs of sensitivities and false positive rates result as the cut-off is varied. The curve of these points is called the receiver operating characteristic (ROC) curve. One goal of diagnostic meta-analysis is to integrate ROC curves and arrive at a summary ROC (SROC) curve. Holling, Böhning, and Böhning (Psychometrika 77:106-126, 2012a) demonstrated that finite semiparametric mixtures can describe the heterogeneity in a sample of Lehmann ROC curves well; this approach leads to clusters of SROC curves of a particular shape. We extend this work with the help of the [Formula: see text] transformation, a flexible family of transformations for proportions. A collection of SROC curves is constructed that approximately contains the Lehmann family but in addition allows the modeling of shapes beyond the Lehmann ROC curves. We introduce two rationales for determining the shape from the data. Using the fact that each curve corresponds to a natural univariate measure of diagnostic accuracy, we show how covariate adjusted mixtures lead to a meta-regression on SROC curves. Three worked examples illustrate the method.
许多筛查测试将测量结果二分以对受试者进行分类。通常,选择一个临界值的方式是,相对于参考程序能够识别出可接受数量的病例,同时又不会产生过多的假阳性。因此,对于同一样本,随着临界值的变化会产生许多对敏感度和假阳性率。这些点的曲线称为接收者操作特征(ROC)曲线。诊断性荟萃分析的一个目标是整合ROC曲线并得出汇总ROC(SROC)曲线。霍林、伯宁和伯宁(《心理测量学》77:106 - 126,2012a)证明有限半参数混合模型能够很好地描述莱曼ROC曲线样本中的异质性;这种方法会导致特定形状的SROC曲线聚类。我们借助[公式:见正文]变换(一种灵活的比例变换族)扩展了这项工作。构建了一组SROC曲线,它大致包含莱曼族,但此外还允许对超出莱曼ROC曲线的形状进行建模。我们介绍了两种从数据中确定形状的基本原理。利用每条曲线对应于诊断准确性的自然单变量度量这一事实,我们展示了协变量调整后的混合模型如何导致对SROC曲线的荟萃回归。三个实例说明了该方法。