Dorazio Robert M, Mukherjee Bhramar, Zhang Li, Ghosh Malay, Jelks Howard L, Jordan Frank
U.S. Geological Survey and Department of Statistics, University of Florida, Gainesville, Florida 32611-0339, USA.
Biometrics. 2008 Jun;64(2):635-44. doi: 10.1111/j.1541-0420.2007.00873.x. Epub 2007 Aug 3.
In surveys of natural populations of animals, a sampling protocol is often spatially replicated to collect a representative sample of the population. In these surveys, differences in abundance of animals among sample locations may induce spatial heterogeneity in the counts associated with a particular sampling protocol. For some species, the sources of heterogeneity in abundance may be unknown or unmeasurable, leading one to specify the variation in abundance among sample locations stochastically. However, choosing a parametric model for the distribution of unmeasured heterogeneity is potentially subject to error and can have profound effects on predictions of abundance at unsampled locations. In this article, we develop an alternative approach wherein a Dirichlet process prior is assumed for the distribution of latent abundances. This approach allows for uncertainty in model specification and for natural clustering in the distribution of abundances in a data-adaptive way. We apply this approach in an analysis of counts based on removal samples of an endangered fish species, the Okaloosa darter. Results of our data analysis and simulation studies suggest that our implementation of the Dirichlet process prior has several attractive features not shared by conventional, fully parametric alternatives.
在对动物自然种群的调查中,抽样方案通常会在空间上进行重复,以收集该种群具有代表性的样本。在这些调查中,样本位置间动物丰度的差异可能会导致与特定抽样方案相关的计数出现空间异质性。对于某些物种,丰度异质性的来源可能未知或无法测量,这使得人们只能随机指定样本位置间丰度的变化情况。然而,为未测量的异质性分布选择一个参数模型可能会出现误差,并且会对未抽样位置的丰度预测产生深远影响。在本文中,我们开发了一种替代方法,其中假设狄利克雷过程先验用于潜在丰度的分布。这种方法允许模型设定存在不确定性,并以数据自适应的方式考虑丰度分布中的自然聚类。我们将这种方法应用于基于濒危鱼类奥卡鲁萨镖鲈移除样本的计数分析中。我们的数据分析和模拟研究结果表明,我们对狄利克雷过程先验的实现具有一些传统的完全参数化替代方法所没有的吸引人的特征。