Gallardo-Madueño R, Leal J F, Dorado G, Holmgren A, López-Barea J, Pueyo C
Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, 14071-Córdoba, España.
J Biol Chem. 1998 Jul 17;273(29):18382-8. doi: 10.1074/jbc.273.29.18382.
We have previously described () that Escherichia coli maintains a balanced supply of deoxyribonucleotides by a regulatory mechanism that up-regulates the levels of ribonucleotide reductase with the lack of its main hydrogen donors thioredoxin, glutaredoxin 1, and glutathione (GSH). By using a semi-quantitative reverse transcription/multiplex polymerase chain reaction fluorescent procedure that enables simultaneous analysis of up to seven mRNA species, we now demonstrate that regulation operates at the transcriptional level. Double mutant cells lacking both thioredoxin and glutaredoxin 1 had increased transcription of the nrdAB operon, as compared with the corresponding wild type parent (maximal induction of 10- and 9-fold for mRNA of nrdA and nrdB genes, respectively). Likewise, a dramatic increase of 36-fold in grxA mRNA was observed in bacteria simultaneously deficient in thioredoxin and GSH (the physiological reductant of all glutaredoxins). The increased expression of the grxA gene in trxA gshA double mutant bacteria was mimicked in trxA single mutant cells by depletion of GSH with diethylmaleate (DEM). This induction of grxA transcription was rapid since maximal increase was detected upon 10 min of DEM exposure. Like grxA expression, the basal level of fpg mRNA, encoding formamidopyrimidine-DNA glycosylase, was increased (about 4-fold) in a trxA gshA double mutant strain; this expression was also induced upon exposure to DEM (11-fold maximal induction). These results suggest that transcription of grxA might share common redox regulatory mechanism(s) with that of the fpg gene, involved in the repair of 8-oxoguanine in DNA.
我们之前曾描述过,大肠杆菌通过一种调节机制维持脱氧核糖核苷酸的平衡供应,该机制在缺乏其主要氢供体硫氧还蛋白、谷氧还蛋白1和谷胱甘肽(GSH)时上调核糖核苷酸还原酶的水平。通过使用一种能够同时分析多达七种mRNA种类的半定量逆转录/多重聚合酶链反应荧光程序,我们现在证明这种调节作用于转录水平。与相应的野生型亲本相比,同时缺乏硫氧还蛋白和谷氧还蛋白1的双突变细胞中nrdAB操纵子的转录增加(nrdA和nrdB基因的mRNA分别最大诱导10倍和9倍)。同样,在同时缺乏硫氧还蛋白和GSH(所有谷氧还蛋白的生理还原剂)的细菌中,观察到grxA mRNA急剧增加了36倍。在trxA单突变细胞中,用马来酸二乙酯(DEM)消耗GSH可模拟trxA gshA双突变细菌中grxA基因表达的增加。grxA转录的这种诱导很快,因为在暴露于DEM 10分钟后就检测到了最大增加。与grxA表达一样,在trxA gshA双突变菌株中,编码甲酰胺嘧啶-DNA糖基化酶的fpg mRNA的基础水平增加(约4倍);暴露于DEM时这种表达也被诱导(最大诱导11倍)。这些结果表明,grxA的转录可能与fpg基因的转录共享共同的氧化还原调节机制,fpg基因参与DNA中8-氧鸟嘌呤的修复。