Suppr超能文献

大肠杆菌中的硫氧还蛋白或谷氧还蛋白对于硫酸盐还原是必需的,但对于脱氧核糖核苷酸合成则不是必需的。

Thioredoxin or glutaredoxin in Escherichia coli is essential for sulfate reduction but not for deoxyribonucleotide synthesis.

作者信息

Russel M, Model P, Holmgren A

机构信息

Laboratory of Genetics, Rockefeller University, New York, New York 10021.

出版信息

J Bacteriol. 1990 Apr;172(4):1923-9. doi: 10.1128/jb.172.4.1923-1929.1990.

Abstract

We have shown previously that Escherichia coli cells constructed to lack both thioredoxin and glutaredoxin are not viable unless they also acquire an additional mutation, which we called X. Here we show that X is a cysA mutation. Our data suggest that the inviability of a trxA grx double mutant is due to the accumulation of 3'-phosphoadenosine 5'-phosphosulfate (PAPS), an intermediate in the sulfate assimilation pathway. The presence of excess cystine at a concentration sufficient to repress the sulfate assimilation pathway obviates the need for an X mutation and prevents the lethality of a novel cys+ trxA grx double mutant designated strain A522. Mutations in genes required for PAPS synthesis (cysA or cysC) protect cells from the otherwise lethal effect of elimination of both thioredoxin and glutaredoxin even in the absence of excess cystine. Both thioredoxin and glutaredoxin have been shown to be hydrogen donors for PAPS reductase (cysH) in vitro (M. L.-S. Tsang, J. Bacteriol. 146:1059-1066, 1981), and one or the other of these compounds is presumably essential in vivo for growth on minimal medium containing sulfate as the sulfur source. The cells which lack both thioredoxin and glutaredoxin require cystine or glutathione for growth on minimal medium but maintain an active ribonucleotide reduction system. Thus, E. coli must contain a third hydrogen donor active with ribonucleotide reductase.

摘要

我们之前已经表明,构建的缺乏硫氧还蛋白和谷氧还蛋白的大肠杆菌细胞无法存活,除非它们还获得一个额外的突变,我们称之为X。在此我们表明X是一个cysA突变。我们的数据表明,trxA grx双突变体的不可存活是由于3'-磷酸腺苷5'-磷酸硫酸酯(PAPS)的积累,PAPS是硫酸盐同化途径中的一种中间体。以足以抑制硫酸盐同化途径的浓度存在的过量胱氨酸消除了对X突变的需求,并防止了一种新的cys+ trxA grx双突变体(指定为A522菌株)的致死性。PAPS合成所需基因(cysA或cysC)中的突变可保护细胞免受硫氧还蛋白和谷氧还蛋白缺失所带来的致死效应,即使在没有过量胱氨酸的情况下也是如此。在体外,硫氧还蛋白和谷氧还蛋白都已被证明是PAPS还原酶(cysH)的氢供体(M. L.-S. Tsang,《细菌学杂志》146:1059 - 1066,1981),并且这些化合物中的一种或另一种在体内对于在以硫酸盐作为硫源的基本培养基上生长可能是必不可少的。缺乏硫氧还蛋白和谷氧还蛋白的细胞在基本培养基上生长需要胱氨酸或谷胱甘肽,但维持一个活跃的核糖核苷酸还原系统。因此,大肠杆菌必须含有第三种对核糖核苷酸还原酶有活性作用的氢供体。

相似文献

7
Assimilatory sulfate reduction in an Escherichia coli mutant lacking thioredoxin activity.
J Bacteriol. 1978 Apr;134(1):131-8. doi: 10.1128/jb.134.1.131-138.1978.
10
Construction and characterization of glutaredoxin-negative mutants of Escherichia coli.
Proc Natl Acad Sci U S A. 1988 Feb;85(4):990-4. doi: 10.1073/pnas.85.4.990.

引用本文的文献

1
Unresolved questions regarding cellular cysteine sources and their possible relationships to ferroptosis.
Adv Cancer Res. 2024;162:1-44. doi: 10.1016/bs.acr.2024.04.001. Epub 2024 May 3.
2
Integration of text mining and biological network analysis: Identification of essential genes in sulfate-reducing bacteria.
Front Microbiol. 2023 Apr 13;14:1086021. doi: 10.3389/fmicb.2023.1086021. eCollection 2023.
3
Comparison of Genome and Plasmid-Based Engineering of Multigene Benzylglucosinolate Pathway in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2022 Nov 22;88(22):e0097822. doi: 10.1128/aem.00978-22. Epub 2022 Nov 3.
5
Molecular basis for the distinct functions of redox-active and FeS-transfering glutaredoxins.
Nat Commun. 2020 Jul 10;11(1):3445. doi: 10.1038/s41467-020-17323-0.
6
Substrate specificity of thioredoxins and glutaredoxins - towards a functional classification.
Heliyon. 2019 Dec 17;5(12):e02943. doi: 10.1016/j.heliyon.2019.e02943. eCollection 2019 Dec.
7
The specificity of thioredoxins and glutaredoxins is determined by electrostatic and geometric complementarity.
Chem Sci. 2015 Dec 1;6(12):7049-7058. doi: 10.1039/c5sc01501d. Epub 2015 Sep 9.
8
Repurposing Auranofin, Ebselen, and PX-12 as Antimicrobial Agents Targeting the Thioredoxin System.
Front Microbiol. 2018 Mar 5;9:336. doi: 10.3389/fmicb.2018.00336. eCollection 2018.
9
Oxidative stress, protein damage and repair in bacteria.
Nat Rev Microbiol. 2017 Jul;15(7):385-396. doi: 10.1038/nrmicro.2017.26. Epub 2017 Apr 19.

本文引用的文献

1
Regulation of ribonucleotide reductase.
Curr Top Cell Regul. 1981;19:47-76. doi: 10.1016/b978-0-12-152819-5.50019-1.
3
Selection for loss of tetracycline resistance by Escherichia coli.
J Bacteriol. 1981 Feb;145(2):1110-1. doi: 10.1128/jb.145.2.1110-1111.1981.
4
Conformational and functional similarities between glutaredoxin and thioredoxins.
EMBO J. 1984 Jul;3(7):1443-9. doi: 10.1002/j.1460-2075.1984.tb01994.x.
6
Relative map location of the rep and rho genes of Escherichia coli.
J Bacteriol. 1982 Sep;151(3):1637-40. doi: 10.1128/jb.151.3.1637-1640.1982.
8
Thioredoxin. 6. The amino acid sequence of the protein from escherichia coli B.
Eur J Biochem. 1968 Dec 5;6(4):475-84. doi: 10.1111/j.1432-1033.1968.tb00470.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验