Suppr超能文献

一类新的拟南芥突变体,其十六碳三烯酸脂肪酸水平降低。

A new class of Arabidopsis mutants with reduced hexadecatrienoic acid fatty acid levels.

作者信息

Miquel M, Cassagne C, Browse J

机构信息

Laboratoire Biogenése Membranaire, Université Victor Segalen, Bordeaux cedex, France.

出版信息

Plant Physiol. 1998 Jul;117(3):923-30. doi: 10.1104/pp.117.3.923.

Abstract

Chloroplast glycerolipids in a number of higher-plant species, including Arabidopsis thaliana, are synthesized by two distinct pathways termed the prokaryotic and eukaryotic pathways. The molecules of galactolipids produced by the prokaryotic pathway contain substantial amounts of hexadecatrienoic acid fatty acid. Here we describe a new class of mutants, designated gly1, with reduced levels of hexadecatrienoic acid. Lipid fatty acid profiles indicated that gly1 mutants exhibited a reduced carbon flux through the prokaryotic pathway that was compensated for by an increased carbon flux through the eukaryotic pathway. Genetic and biochemical approaches revealed that the gly1 phenotype could not be explained by a deficiency in the enzymes of the prokaryotic pathway. The flux of fatty acids into the prokaryotic pathway is sensitive to changes in glycerol-3-phosphate (G3P) availability, and the chloroplast G3P pool can be increased by exogenous application of glycerol to leaves. Exogenous glycerol treatment of gly1 plants allowed chemical complementation of the mutant phenotype. These results are consistent with a mutant lesion affecting the G3P supply within the chloroplast. The gly1 mutants may therefore help in determining the pathway for synthesis of chloroplast G3P.

摘要

包括拟南芥在内的许多高等植物物种中的叶绿体甘油脂是通过两种不同的途径合成的,即原核途径和真核途径。原核途径产生的半乳糖脂分子含有大量的十六碳三烯酸脂肪酸。在这里,我们描述了一类新的突变体,命名为gly1,其十六碳三烯酸水平降低。脂质脂肪酸谱表明,gly1突变体通过原核途径的碳通量降低,而通过真核途径增加的碳通量可对此进行补偿。遗传和生化方法表明,gly1表型不能用原核途径中酶的缺陷来解释。脂肪酸进入原核途径的通量对甘油-3-磷酸(G3P)可用性的变化敏感,并且通过向叶片外源施用甘油可以增加叶绿体G3P库。对gly1植物进行外源甘油处理可实现突变体表型的化学互补。这些结果与影响叶绿体内G3P供应的突变损伤一致。因此,gly1突变体可能有助于确定叶绿体G3P的合成途径。

相似文献

1
A new class of Arabidopsis mutants with reduced hexadecatrienoic acid fatty acid levels.
Plant Physiol. 1998 Jul;117(3):923-30. doi: 10.1104/pp.117.3.923.
2
Towards the cloning of GLY1.
Biochem Soc Trans. 2000 Dec;28(6):675-7.
6
Mutations in the Prokaryotic Pathway Rescue the fatty acid biosynthesis1 Mutant in the Cold.
Plant Physiol. 2015 Sep;169(1):442-52. doi: 10.1104/pp.15.00931. Epub 2015 Jul 29.
9
Metabolic and transcriptional responses of glycerolipid pathways to a perturbation of glycerol 3-phosphate metabolism in Arabidopsis.
J Biol Chem. 2010 Jul 23;285(30):22957-65. doi: 10.1074/jbc.M109.097758. Epub 2010 Mar 19.
10
Oleic acid levels regulated by glycerolipid metabolism modulate defense gene expression in Arabidopsis.
Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):5152-7. doi: 10.1073/pnas.0401315101. Epub 2004 Mar 25.

引用本文的文献

1
Comprehensive genomic characterization of the soybean G3PDH gene family and its role in virus resistance.
BMC Plant Biol. 2025 Sep 1;25(1):1171. doi: 10.1186/s12870-025-06579-7.
2
Submergence induced changes of molecular species in membrane lipids in .
Plant Divers. 2016 Jun 6;38(3):156-162. doi: 10.1016/j.pld.2016.05.006. eCollection 2016 Jun.
3
Signals of Systemic Immunity in Plants: Progress and Open Questions.
Int J Mol Sci. 2018 Apr 10;19(4):1146. doi: 10.3390/ijms19041146.
5
Nitro-Fatty Acids in Plant Signaling: Nitro-Linolenic Acid Induces the Molecular Chaperone Network in Arabidopsis.
Plant Physiol. 2016 Feb;170(2):686-701. doi: 10.1104/pp.15.01671. Epub 2015 Dec 1.
6
Mutations in the Prokaryotic Pathway Rescue the fatty acid biosynthesis1 Mutant in the Cold.
Plant Physiol. 2015 Sep;169(1):442-52. doi: 10.1104/pp.15.00931. Epub 2015 Jul 29.
7
Understanding the biochemical basis of temperature-induced lipid pathway adjustments in plants.
Plant Cell. 2015 Jan;27(1):86-103. doi: 10.1105/tpc.114.134338. Epub 2015 Jan 6.
10
Remodeling of membrane lipids in iron-starved Chlamydomonas.
J Biol Chem. 2013 Oct 18;288(42):30246-30258. doi: 10.1074/jbc.M113.490425. Epub 2013 Aug 27.

本文引用的文献

2
A mutant of Arabidopsis deficient in desaturation of palmitic Acid in leaf lipids.
Plant Physiol. 1989 Jul;90(3):943-7. doi: 10.1104/pp.90.3.943.
3
A mutant of Arabidopsis deficient in the chloroplast 16:1/18:1 desaturase.
Plant Physiol. 1989 Jun;90(2):522-9. doi: 10.1104/pp.90.2.522.
7
Dihydroxyacetone phosphate reductase in plants.
Plant Physiol. 1988 Jan;86(1):98-103. doi: 10.1104/pp.86.1.98.
9
Enzymes of glycerol metabolism in the storage tissues of Fatty seedlings.
Plant Physiol. 1975 Mar;55(3):555-8. doi: 10.1104/pp.55.3.555.
10
Plant dihydroxyacetone phosphate reductases : purification, characterization, and localization.
Plant Physiol. 1992 Sep;100(1):352-9. doi: 10.1104/pp.100.1.352.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验