Suppr超能文献

了解植物中温度诱导的脂质途径调节的生化基础。

Understanding the biochemical basis of temperature-induced lipid pathway adjustments in plants.

作者信息

Li Qiang, Zheng Qian, Shen Wenyun, Cram Dustin, Fowler D Brian, Wei Yangdou, Zou Jitao

机构信息

National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada.

National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada.

出版信息

Plant Cell. 2015 Jan;27(1):86-103. doi: 10.1105/tpc.114.134338. Epub 2015 Jan 6.

Abstract

Glycerolipid biosynthesis in plants proceeds through two major pathways compartmentalized in the chloroplast and the endoplasmic reticulum (ER). The involvement of glycerolipid pathway interactions in modulating membrane desaturation under temperature stress has been suggested but not fully explored. We profiled glycerolipid changes as well as transcript dynamics under suboptimal temperature conditions in three plant species that are distinctively different in the mode of lipid pathway interactions. In Arabidopsis thaliana, a 16:3 plant, the chloroplast pathway is upregulated in response to low temperature, whereas high temperature promotes the eukaryotic pathway. Operating under a similar mechanistic framework, Atriplex lentiformis at high temperature drastically increases the contribution of the eukaryotic pathway and correspondingly suppresses the prokaryotic pathway, resulting in the switch of lipid profile from 16:3 to 18:3. In wheat (Triticum aestivum), an 18:3 plant, low temperature also influences the channeling of glycerolipids from the ER to chloroplast. Evidence of differential trafficking of diacylglycerol moieties from the ER to chloroplast was uncovered in three plant species as another layer of metabolic adaptation under temperature stress. We propose a model that highlights the predominance and prevalence of lipid pathway interactions in temperature-induced lipid compositional changes.

摘要

植物中的甘油脂质生物合成通过叶绿体和内质网(ER)中分隔的两条主要途径进行。已有研究表明甘油脂质途径相互作用参与温度胁迫下膜去饱和的调节,但尚未得到充分探索。我们分析了三种在脂质途径相互作用模式上明显不同的植物在次优温度条件下的甘油脂质变化以及转录本动态。在拟南芥(一种16:3植物)中,叶绿体途径在低温下上调,而高温促进真核途径。在类似的机制框架下,高温下的滨藜极大地增加了真核途径的贡献,并相应地抑制了原核途径,导致脂质谱从16:3转变为18:3。在小麦(普通小麦,一种18:3植物)中,低温也影响甘油脂质从内质网到叶绿体的转运。在三种植物中发现了二酰基甘油部分从内质网到叶绿体的差异转运证据,这是温度胁迫下代谢适应的另一层表现。我们提出了一个模型,突出了脂质途径相互作用在温度诱导的脂质组成变化中的主导地位和普遍性。

相似文献

1
Understanding the biochemical basis of temperature-induced lipid pathway adjustments in plants.
Plant Cell. 2015 Jan;27(1):86-103. doi: 10.1105/tpc.114.134338. Epub 2015 Jan 6.
2
Adjustments of lipid pathways in plant adaptation to temperature stress.
Plant Signal Behav. 2016;11(1):e1058461. doi: 10.1080/15592324.2015.1058461.
3
Lipid trafficking between the endoplasmic reticulum and the chloroplast.
Biochem Soc Trans. 2006 Jun;34(Pt 3):395-8. doi: 10.1042/BST0340395.
4
A chloroplast diacylglycerol lipase modulates glycerolipid pathway balance in Arabidopsis.
Plant J. 2023 Jul;115(2):335-350. doi: 10.1111/tpj.16228. Epub 2023 Apr 17.
5
A role for lipid trafficking in chloroplast biogenesis.
Prog Lipid Res. 2008 Sep;47(5):381-9. doi: 10.1016/j.plipres.2008.04.001. Epub 2008 Apr 7.
9
Lipid trafficking at endoplasmic reticulum-chloroplast membrane contact sites.
Curr Opin Cell Biol. 2015 Aug;35:21-9. doi: 10.1016/j.ceb.2015.03.004. Epub 2015 Apr 8.
10
Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in Arabidopsis.
Plant Cell. 2005 Nov;17(11):3094-110. doi: 10.1105/tpc.105.035592. Epub 2005 Sep 30.

引用本文的文献

3
Functional Identification Reveals That TaTGA16-2D Promotes Drought and Heat Tolerance.
Plants (Basel). 2025 Jul 9;14(14):2125. doi: 10.3390/plants14142125.
4
Genome-Wide Identification and Expression Analysis of TaDES1 Gene Family Responded to Biotic and Abiotic Stress in Wheat ( L.).
Food Sci Nutr. 2025 Jul 8;13(7):e70504. doi: 10.1002/fsn3.70504. eCollection 2025 Jul.
8
Metabolic engineering of lipids for crop resilience and nutritional improvements towards sustainable agriculture.
Funct Integr Genomics. 2025 Apr 1;25(1):78. doi: 10.1007/s10142-025-01588-z.
10
Integrative multi-omics analysis of chilling stress in pumpkin (Cucurbita moschata).
BMC Genomics. 2024 Nov 5;25(1):1042. doi: 10.1186/s12864-024-10939-2.

本文引用的文献

1
The structural analysis of wheat flour glycerolipids.
Lipids. 1971 Oct;6(10):768-76. doi: 10.1007/BF02531305.
2
HTSeq--a Python framework to work with high-throughput sequencing data.
Bioinformatics. 2015 Jan 15;31(2):166-9. doi: 10.1093/bioinformatics/btu638. Epub 2014 Sep 25.
3
A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome.
Science. 2014 Jul 18;345(6194):1251788. doi: 10.1126/science.1251788.
4
Trimmomatic: a flexible trimmer for Illumina sequence data.
Bioinformatics. 2014 Aug 1;30(15):2114-20. doi: 10.1093/bioinformatics/btu170. Epub 2014 Apr 1.
5
Linking gene expression and membrane lipid composition of Arabidopsis.
Plant Cell. 2014 Mar;26(3):915-28. doi: 10.1105/tpc.113.118919. Epub 2014 Mar 18.
7
De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis.
Nat Protoc. 2013 Aug;8(8):1494-512. doi: 10.1038/nprot.2013.084. Epub 2013 Jul 11.
9
In vivo packaging of triacylglycerols enhances Arabidopsis leaf biomass and energy density.
Plant Physiol. 2013 Jun;162(2):626-39. doi: 10.1104/pp.113.216820. Epub 2013 Apr 24.
10
Acyl-lipid metabolism.
Arabidopsis Book. 2013;11:e0161. doi: 10.1199/tab.0161. Epub 2013 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验