Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 15 Herman Ottó út, H-1022 Budapest, Hungary.
Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic.
Int J Mol Sci. 2018 Apr 10;19(4):1146. doi: 10.3390/ijms19041146.
Systemic acquired resistance (SAR) is a defence mechanism that induces protection against a wide range of pathogens in distant, pathogen-free parts of plants after a primary inoculation. Multiple mobile compounds were identified as putative SAR signals or important factors for influencing movement of SAR signalling elements in and tobacco. These include compounds with very different chemical structures like lipid transfer protein DIR1 (DEFECTIVE IN INDUCED RESISTANCE1), methyl salicylate (MeSA), dehydroabietinal (DA), azelaic acid (AzA), glycerol-3-phosphate dependent factor (G3P) and the lysine catabolite pipecolic acid (Pip). Genetic studies with different SAR-deficient mutants and silenced lines support the idea that some of these compounds (MeSA, DIR1 and G3P) are activated only when SAR is induced in darkness. In addition, although AzA doubled in phloem exudate of (TMV) infected tobacco leaves, external AzA treatment could not induce resistance neither to viral nor bacterial pathogens, independent of light conditions. Besides light intensity and timing of light exposition after primary inoculation, spectral distribution of light could also influence the SAR induction capacity. Recent data indicated that TMV and CMV () infection in tobacco, like bacteria in caused massive accumulation of Pip. Treatment of tobacco leaves with Pip in the light, caused a drastic and significant local and systemic decrease in lesion size of TMV infection. Moreover, two very recent papers, added in proof, demonstrated the role of FMO1 (FLAVIN-DEPENDENT-MONOOXYGENASE1) in conversion of Pip to -hydroxypipecolic acid (NHP). NHP systemically accumulates after microbial attack and acts as a potent inducer of plant immunity to bacterial and oomycete pathogens in . These results argue for the pivotal role of Pip and NHP as an important signal compound of SAR response in different plants against different pathogens.
系统获得性抗性(SAR)是一种防御机制,它在植物的初次接种后,诱导对广泛的病原体在远距离、无病原体的部位产生保护。在 和烟草中,已经鉴定出多种可移动的化合物作为 SAR 信号的假定信号或影响 SAR 信号元件运动的重要因素。这些化合物包括具有非常不同化学结构的化合物,如脂质转移蛋白 DIR1(诱导抗性缺陷 1)、甲基水杨酸(MeSA)、脱氢枞酸(DA)、壬二酸(AzA)、甘油-3-磷酸依赖性因子(G3P)和赖氨酸分解代谢产物哌啶酸(Pip)。不同 SAR 缺陷突变体和沉默系的遗传研究支持这样一种观点,即这些化合物中的一些(MeSA、DIR1 和 G3P)只有在 SAR 在黑暗中诱导时才被激活。此外,尽管 AzA 在 (TMV)感染的烟草叶片韧皮部渗出物中增加了一倍,但无论光照条件如何,外部 AzA 处理都不能诱导对病毒和细菌病原体的抗性。除了初次接种后光照强度和光照时间外,光照的光谱分布也会影响 SAR 的诱导能力。最近的数据表明,烟草中的 TMV 和 CMV()感染,就像细菌在 中一样,导致 Pip 的大量积累。在光照下用 Pip 处理烟草叶片,导致 TMV 感染的局部和全身病变大小急剧显著减小。此外,两篇最近的论文补充证明了 FMO1(黄素依赖单加氧酶 1)在将 Pip 转化为 -羟基哌啶酸(NHP)中的作用。微生物攻击后,NHP 系统积累,并作为植物对细菌和卵菌病原体免疫的有效诱导剂在 中发挥作用。这些结果表明,Pip 和 NHP 作为不同植物中 SAR 反应的重要信号化合物,在不同的植物中对不同的病原体起着关键作用。