Agback P, Baumann H, Knapp S, Ladenstein R, Härd T
Center for Structural Biochemistry, Department of Biotechnology, The Royal Institute of Technology (KTH), Huddinge, Sweden.
Nat Struct Biol. 1998 Jul;5(7):579-84. doi: 10.1038/836.
Many biochemical processes, including DNA packing, maintenance and control, rely on non-sequence specific protein-DNA interactions. Nonspecific DNA-binding proteins have evolved to tolerate a wide range of DNA sequences, yet bind with a respectable affinity. The nonspecific binding requirement is in contrast to that imposed on, for example, transcription factors and implies a different structural basis for the biomolecular recognition process. To address this issue, and the mechanism for archaeal DNA packing, we determined the structure of the Sso7d protein from Sulfolobus solfataricus in complex with DNA. Sso7d binds DNA by placing a triple-stranded beta-sheet across the DNA minor groove. The protein is anchored in this position by the insertion of hydrogen bond-donating side chains into the groove and additionally stabilized by electrostatic and non-polar interactions with the DNA backbone. This structure explains how strong binding can be achieved independent of DNA sequence. Sso7d binding also distorts the DNA conformation and introduces significant unwinding of the helix. This effect suggests a mechanism for DNA packing in Sulfolobus based on negative DNA supercoiling.
许多生物化学过程,包括DNA包装、维持和调控,都依赖于非序列特异性的蛋白质-DNA相互作用。非特异性DNA结合蛋白已经进化到能够耐受广泛的DNA序列,但仍能以可观的亲和力结合。非特异性结合要求与例如转录因子所面临的要求不同,这意味着生物分子识别过程有不同的结构基础。为了解决这个问题以及古细菌DNA包装的机制,我们确定了来自嗜热栖热菌的Sso7d蛋白与DNA复合物的结构。Sso7d通过在DNA小沟上放置一个三链β-折叠来结合DNA。蛋白质通过将供氢键的侧链插入小沟而锚定在这个位置,并通过与DNA主链的静电和非极性相互作用进一步稳定。这种结构解释了如何独立于DNA序列实现强结合。Sso7d的结合还会扭曲DNA构象并导致螺旋显著解旋。这种效应提示了基于负超螺旋的嗜热栖热菌DNA包装机制。