Suppr超能文献

Crosstalk between normal and tumoral brain cells. Effect on sex steroid metabolism.

作者信息

Melcangi R C, Cavarretta I, Magnaghi V, Ballabio M, Martini L, Motta M

机构信息

Department of Endocrinology, University of Milano, Italy.

出版信息

Endocrine. 1998 Feb;8(1):65-71. doi: 10.1385/ENDO:8:1:65.

Abstract

The present article shows for the first time that two cell lines derived respectively from a rat glioma (C6 cell line) and from a human astrocytoma (1321N1 cell line) are able to convert testosterone and progesterone into their corresponding 5 alpha-reduced metabolites dihydrotestosterone and dihydroprogesterone. Moreover, both cell lines are also able to convert these metabolites further into their corresponding 3 alpha-OH derivatives, 5 alpha-androstan-3 alpha, 7 beta-diol (3 alpha-diol) and tetrahydroprogesterone. On the basis of these observations, the possibility that secretory products of normal and tumoral brain cells might be able to influence steroid metabolism occurring in the two glial cell lines previously mentioned as well as in fetal rat neurons and in neonatal rat type 1 astrocytes has been considered. To this purpose, cultures of the different cellular types have been exposed to the conditioned medium in which the other cells were grown. The results obtained indicate that: 1. Neurons are able to stimulate, in a statistically significant fashion, the formation of dihydrotestosterone (DHT), 3 alpha-diol, and tetrahydraprogesterone (THP) in C6 cells. 2. Type 1 astrocytes, on the contrary, are unable to modify steroid metabolism in C6 cells. 3. C6 cell product(s) decrease(s) the formation of DHP in type 1 astrocytes, without modifying that of DHT. 4. C6 cells do not influence the metabolism of testosterone (T) and progesterone (P) in neurons. In conclusion, the present observations show that the conditioned medium of normal neurons is able to increase the metabolism of testosterone and progesterone occurring in a tumoral glial cell line, and that the conditioned media of the two tumoral cell lines analyzed are able to decrease the conversion of P into DHP occurring in normal type 1 astrocytes. The surprising result that these conditioned media do not alter the formation of DHT is discussed. Work is presently in progress to identify the principle(s) responsible respectively for the activating and inhibiting actions here described.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验