Suppr超能文献

U2AF与SAP 155相互作用在将U2 snRNP招募至分支位点中的潜在作用。

A potential role for U2AF-SAP 155 interactions in recruiting U2 snRNP to the branch site.

作者信息

Gozani O, Potashkin J, Reed R

机构信息

Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

Mol Cell Biol. 1998 Aug;18(8):4752-60. doi: 10.1128/MCB.18.8.4752.

Abstract

Base pairing between U2 snRNA and the branchpoint sequence (BPS) is essential for pre-mRNA splicing. Because the metazoan BPS is short and highly degenerate, this interaction alone is insufficient for specific binding of U2 snRNP. The splicing factor U2AF binds to the pyrimidine tract at the 3' splice site in the earliest spliceosomal complex, E, and is essential for U2 snRNP binding in the spliceosomal complex A. We show that the U2 snRNP protein SAP 155 UV cross-links to pre-mRNA on both sides of the BPS in the A complex. SAP 155's downstream cross-linking site is immediately adjacent to the U2AF binding site, and the two proteins interact directly in protein-protein interaction assays. Using UV cross-linking, together with functional analyses of pre-mRNAs containing duplicated BPSs, we show a direct correlation between BPS selection and UV cross-linking of SAP 155 on both sides of the BPS. Together, our data are consistent with a model in which U2AF binds to the pyrimidine tract in the E complex and then interacts with SAP 155 to recruit U2 snRNP to the BPS.

摘要

U2小核核糖核酸(snRNA)与分支点序列(BPS)之间的碱基配对对于前体信使核糖核酸(pre-mRNA)剪接至关重要。由于后生动物的BPS很短且高度简并,仅这种相互作用不足以实现U2小核核糖核蛋白颗粒(snRNP)的特异性结合。剪接因子U2辅助因子(U2AF)在最早的剪接体复合物E中与3'剪接位点的嘧啶序列结合,并且对于剪接体复合物A中U2 snRNP的结合至关重要。我们发现,在复合物A中,U2 snRNP蛋白SAP 155通过紫外线交联与BPS两侧的pre-mRNA结合。SAP 155的下游交联位点紧邻U2AF结合位点,并且这两种蛋白在蛋白质-蛋白质相互作用试验中直接相互作用。通过紫外线交联以及对含有重复BPS的pre-mRNA进行功能分析,我们发现BPS选择与BPS两侧SAP 155的紫外线交联之间存在直接关联。总之,我们的数据与一个模型相符,即U2AF在复合物E中与嘧啶序列结合,然后与SAP 155相互作用,将U2 snRNP招募至BPS。

相似文献

1
A potential role for U2AF-SAP 155 interactions in recruiting U2 snRNP to the branch site.
Mol Cell Biol. 1998 Aug;18(8):4752-60. doi: 10.1128/MCB.18.8.4752.
2
Accumulation of a novel spliceosomal complex on pre-mRNAs containing branch site mutations.
Mol Cell Biol. 1995 Oct;15(10):5750-6. doi: 10.1128/MCB.15.10.5750.
3
Pre-spliceosome formation in S.pombe requires a stable complex of SF1-U2AF(59)-U2AF(23).
EMBO J. 2002 Oct 15;21(20):5516-26. doi: 10.1093/emboj/cdf555.
5
Mammalian splicing factor SF1 interacts with SURP domains of U2 snRNP-associated proteins.
Nucleic Acids Res. 2015 Dec 2;43(21):10456-73. doi: 10.1093/nar/gkv952. Epub 2015 Sep 29.
6
The SF3b155 N-terminal domain is a scaffold important for splicing.
Biochemistry. 2006 Aug 22;45(33):10092-101. doi: 10.1021/bi060429o.
10
Direct interactions between pre-mRNA and six U2 small nuclear ribonucleoproteins during spliceosome assembly.
Mol Cell Biol. 1994 May;14(5):2994-3005. doi: 10.1128/mcb.14.5.2994-3005.1994.

引用本文的文献

1
Cancer-associated SF3B1 mutation K700E causes widespread changes in U2/branchpoint recognition without altering splicing.
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2423776122. doi: 10.1073/pnas.2423776122. Epub 2025 Mar 26.
2
SF3B1: from core splicing factor to oncogenic driver.
RNA. 2025 Feb 19;31(3):314-332. doi: 10.1261/rna.080368.124.
5
RNA-Binding Protein-Mediated Alternative Splicing Regulates Abiotic Stress Responses in Plants.
Int J Mol Sci. 2024 Sep 30;25(19):10548. doi: 10.3390/ijms251910548.
6
Splicing the Difference: Harnessing the Complexity of the Transcriptome in Hematopoiesis.
Exp Hematol. 2024 Dec;140:104655. doi: 10.1016/j.exphem.2024.104655. Epub 2024 Oct 10.
7
Long-read transcriptome sequencing of CLL and MDS patients uncovers molecular effects of mutations.
Genome Res. 2024 Nov 20;34(11):1832-1848. doi: 10.1101/gr.279327.124.
8
Nuclear mRNA export.
Acta Biochim Biophys Sin (Shanghai). 2024 Sep 3;57(1):84-100. doi: 10.3724/abbs.2024145.
9
KHSRP ameliorates acute liver failure by regulating pre-mRNA splicing through its interaction with SF3B1.
Cell Death Dis. 2024 Aug 26;15(8):618. doi: 10.1038/s41419-024-06886-1.
10
Taxonomy of introns and the evolution of minor introns.
Nucleic Acids Res. 2024 Aug 27;52(15):9247-9266. doi: 10.1093/nar/gkae550.

本文引用的文献

1
Phosphorylation of spliceosomal protein SAP 155 coupled with splicing catalysis.
Genes Dev. 1998 May 15;12(10):1409-14. doi: 10.1101/gad.12.10.1409.
3
Evidence that U5 snRNP recognizes the 3' splice site for catalytic step II in mammals.
EMBO J. 1997 Aug 1;16(15):4746-59. doi: 10.1093/emboj/16.15.4746.
4
U2AF65 recruits a novel human DEAD box protein required for the U2 snRNP-branchpoint interaction.
Genes Dev. 1997 Jul 15;11(14):1864-72. doi: 10.1101/gad.11.14.1864.
5
The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC.
Cell. 1997 May 30;89(5):781-7. doi: 10.1016/s0092-8674(00)80261-5.
6
Protein functions in pre-mRNA splicing.
Curr Opin Cell Biol. 1997 Jun;9(3):320-8. doi: 10.1016/s0955-0674(97)80003-8.
7
Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals.
Cell. 1997 May 2;89(3):403-12. doi: 10.1016/s0092-8674(00)80221-4.
10
The structure and function of proteins involved in mammalian pre-mRNA splicing.
Annu Rev Biochem. 1996;65:367-409. doi: 10.1146/annurev.bi.65.070196.002055.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验