Nelson B K
Department of Emergency Medicine, Texas Tech University Health Sciences Center, El Paso, USA.
Acad Emerg Med. 1998 Jul;5(7):739-44. doi: 10.1111/j.1553-2712.1998.tb02493.x.
Most methods of defining a statistical relationship between variables require that errors in prediction not be correlated. That is, knowledge of the error in one instance should not give information about the likely error in the next measurement. Real data frequently fail this requirement. If a Durbin-Watson statistic reveals that there is autocorrelation of sequential data points, analysis of variance and regression results will be invalid and possibly misleading. Such data sets may be analyzed by time series methodologies such as autoregressive integrated moving average (ARIMA) modeling. This method is demonstrated by an example from a public policy intervention.
大多数定义变量间统计关系的方法都要求预测误差不相关。也就是说,一个实例中的误差信息不应为下一次测量的可能误差提供信息。实际数据常常无法满足这一要求。如果杜宾-沃森统计量显示顺序数据点存在自相关,那么方差分析和回归结果将无效,甚至可能产生误导。这类数据集可通过自回归积分滑动平均(ARIMA)建模等时间序列方法进行分析。本文通过一个公共政策干预的例子对该方法进行说明。