Suppr超能文献

统计方法:五、使用自回归积分移动平均(ARIMA)模型的时间序列分析。

Statistical methodology: V. Time series analysis using autoregressive integrated moving average (ARIMA) models.

作者信息

Nelson B K

机构信息

Department of Emergency Medicine, Texas Tech University Health Sciences Center, El Paso, USA.

出版信息

Acad Emerg Med. 1998 Jul;5(7):739-44. doi: 10.1111/j.1553-2712.1998.tb02493.x.

Abstract

Most methods of defining a statistical relationship between variables require that errors in prediction not be correlated. That is, knowledge of the error in one instance should not give information about the likely error in the next measurement. Real data frequently fail this requirement. If a Durbin-Watson statistic reveals that there is autocorrelation of sequential data points, analysis of variance and regression results will be invalid and possibly misleading. Such data sets may be analyzed by time series methodologies such as autoregressive integrated moving average (ARIMA) modeling. This method is demonstrated by an example from a public policy intervention.

摘要

大多数定义变量间统计关系的方法都要求预测误差不相关。也就是说,一个实例中的误差信息不应为下一次测量的可能误差提供信息。实际数据常常无法满足这一要求。如果杜宾-沃森统计量显示顺序数据点存在自相关,那么方差分析和回归结果将无效,甚至可能产生误导。这类数据集可通过自回归积分滑动平均(ARIMA)建模等时间序列方法进行分析。本文通过一个公共政策干预的例子对该方法进行说明。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验