Suppr超能文献

孟加拉国的快速人员流动与登革热传播:基于新冠疫情和开斋节不同政策措施的时空分析

Rapid human movement and dengue transmission in Bangladesh: a spatial and temporal analysis based on different policy measures of COVID-19 pandemic and Eid festival.

作者信息

Islam Jahirul, Hu Wenbiao

机构信息

Ecosystem Change and Population Health Research Group, Centre for Immunology and Infection Control, School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, Brisbane, QLD, 4059, Australia.

出版信息

Infect Dis Poverty. 2024 Dec 26;13(1):99. doi: 10.1186/s40249-024-01267-4.

Abstract

BACKGROUND

Rapid human movement plays a crucial role in the spatial dissemination of the dengue virus. Nevertheless, robust quantification of this relationship using both spatial and temporal models remains necessary. This study aims to explore the spatial and temporal patterns of dengue transmission under various human movement contexts.

METHODS

We obtained district-wise aggregated dengue incidence data from the Management Information System, Directorate General of Health Services of Bangladesh. The stringency index (SI), along with eight individual policy measures (from the Oxford Coronavirus Government Response Tracker database) and six mobility indices (as measured by Google's Community Mobility Reports) were obtained as human movement indicators. A multi-step correlative modelling approach, including various spatial and temporal models, was utilized to explore the associations of dengue incidence with the SI, fourteen human movement indices and the Eid festival.

RESULTS

The global Moran's I indicated significant spatial autocorrelation in dengue incidence during the pre-pandemic (Moran's I: 0.14, P < 0.05) and post-pandemic periods (Moran's I: 0.42, P < 0.01), while the pandemic period (2020-2022) showed weaker, non-significant spatial clustering (Moran's I: 0.07, P > 0.05). Following the pandemic, we identified the emergence of new dengue hotspots. We found a strong negative relationship between monthly dengue incidence and the SI (r: - 0.62, P < 0.01). Through the selection of an optimal Seasonal autoregressive integrated moving average model, we observed that the closure of public transport (β = - 1.66, P < 0.10) and restrictions on internal movement (β = - 2.13, P < 0.10) were associated with the reduction of dengue incidence. Additionally, observed cases were substantially lower than predicted cases during the period from 2020 to 2022. By utilising additional time-series models, we were able to identify in 2023 a rise in dengue incidence associated with the Eid festival intervention, even after adjusting for important climate variables.

CONCLUSIONS

Overall, rapid human movement was found to be associated with increased dengue transmission in Bangladesh. Consequently, the implemention of effective mosquito control interventions prior to large festival periods is necessary for preventing the spread of the disease nationwide. We emphasize the necessity for developing advanced surveillance and monitoring networks to track real-time human movement patterns and dengue incidence.

摘要

背景

人类的快速移动在登革热病毒的空间传播中起着关键作用。然而,仍有必要使用空间和时间模型对这种关系进行有力的量化。本研究旨在探讨在各种人类移动背景下登革热传播的时空模式。

方法

我们从孟加拉国卫生服务总局管理信息系统获取了按地区汇总的登革热发病率数据。获取了严格指数(SI)以及八项单独的政策措施(来自牛津冠状病毒政府应对追踪数据库)和六项移动指数(由谷歌社区移动报告衡量)作为人类移动指标。采用了一种多步骤相关建模方法,包括各种空间和时间模型,以探讨登革热发病率与SI、十四项人类移动指数和开斋节之间的关联。

结果

全局莫兰指数表明,在疫情前(莫兰指数:0.14,P < 0.05)和疫情后时期(莫兰指数:0.42,P < 0.01)登革热发病率存在显著的空间自相关,而疫情期间(2020 - 2022年)空间聚类较弱且不显著(莫兰指数:0.07,P > 0.05)。疫情之后,我们发现出现了新的登革热热点地区。我们发现每月登革热发病率与SI之间存在很强的负相关关系(r: - 0.62,P < 0.01)。通过选择最优的季节性自回归积分移动平均模型,我们观察到公共交通的关闭(β = - 1.66,P < 0.10)和内部移动限制(β = - 2.13,P < 0.10)与登革热发病率的降低有关。此外,在2020年至2022年期间,观察到的病例数大幅低于预测病例数。通过使用额外的时间序列模型,即使在调整了重要的气候变量之后,我们在2023年仍能够确定与开斋节干预相关的登革热发病率上升。

结论

总体而言,在孟加拉国,人类的快速移动被发现与登革热传播增加有关。因此,在大型节日之前实施有效的蚊虫控制干预措施对于防止疾病在全国范围内传播是必要的。我们强调有必要建立先进的监测和监控网络,以跟踪实时人类移动模式和登革热发病率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d865/11670399/36aa4c8080cd/40249_2024_1267_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验