Abouhamad W N, Bray D, Schuster M, Boesch K C, Silversmith R E, Bourret R B
Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, USA.
J Bacteriol. 1998 Aug;180(15):3757-64. doi: 10.1128/JB.180.15.3757-3764.1998.
Escherichia coli responds to its environment by means of a network of intracellular reactions which process signals from membrane-bound receptors and relay them to the flagellar motors. Although characterization of the reactions in the chemotaxis signaling pathway is sufficiently complete to construct computer simulations that predict the phenotypes of mutant strains with a high degree of accuracy, two previous experimental investigations of the activity remaining upon genetic deletion of multiple signaling components yielded several contradictory results (M. P. Conley, A. J. Wolfe, D. F. Blair, and H. C. Berg, J. Bacteriol. 171:5190-5193, 1989; J. D. Liu and J. S. Parkinson, Proc. Natl. Acad. Sci. USA 86:8703-8707, 1989). For example, "building up" the pathway by adding back CheA and CheY to a gutted strain lacking chemotaxis genes resulted in counterclockwise flagellar rotation whereas "breaking down" the pathway by deleting chemotaxis genes except cheA and cheY resulted in alternating episodes of clockwise and counterclockwise flagellar rotation. Our computer simulation predicts that trace amounts of CheZ expressed in the gutted strain could account for this difference. We tested this explanation experimentally by constructing a mutant containing a new deletion of the che genes that cannot express CheZ and verified that the behavior of strains built up from the new deletion does in fact conform to both the phenotypes observed for breakdown strains and computer-generated predictions. Our findings consolidate the present view of the chemotaxis signaling pathway and highlight the utility of molecularly based computer models in the analysis of complex biochemical networks.
大肠杆菌通过细胞内反应网络对其环境做出响应,该网络处理来自膜结合受体的信号并将其传递给鞭毛马达。尽管趋化信号通路中反应的特征已足够完整,能够构建出可高度准确预测突变菌株表型的计算机模拟,但之前两项对多个信号成分基因缺失后剩余活性的实验研究得出了一些相互矛盾的结果(M. P. 康利、A. J. 沃尔夫、D. F. 布莱尔和H. C. 伯格,《细菌学杂志》171:5190 - 5193,《美国国家科学院院刊》86:8703 - 8707,1989年)。例如,向缺乏趋化基因的缺失菌株中回补CheA和CheY来“构建”该通路会导致鞭毛逆时针旋转,而通过删除除cheA和cheY之外的趋化基因来“破坏”该通路会导致鞭毛顺时针和逆时针旋转交替出现。我们的计算机模拟预测,在缺失菌株中表达的微量CheZ可以解释这种差异。我们通过构建一个不能表达CheZ的che基因新缺失突变体对这一解释进行了实验验证,并证实从新缺失突变体构建的菌株的行为实际上与破坏菌株观察到的表型以及计算机生成的预测结果均相符。我们的研究结果巩固了目前对趋化信号通路的认识,并突出了基于分子的计算机模型在复杂生化网络分析中的实用性。