Turner L, Samuel A D, Stern A S, Berg H C
Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Biophys J. 1999 Jul;77(1):597-603. doi: 10.1016/S0006-3495(99)76916-X.
The behavior of the bacterium Escherichia coli is controlled by switching of the flagellar rotary motor between the two rotational states, clockwise (CW) and counterclockwise (CCW). The molecular mechanism for switching remains unknown, but binding of the response regulator CheY-P to the motor component FliM enhances CW rotation. This effect is mimicked by the unphosphorylated double mutant CheY13DK106YW (CheY**). To learn more about switching, we measured the fraction of time that a motor spends in the CW state (the CW bias) at different concentrations of CheY** and at different temperatures. From the CW bias, we computed the standard free energy change of switching. In the absence of CheY, this free energy change is a linear function of temperature (. Biophys. J. 71:2227-2233). In the presence of CheY**, it is nonlinear. However, the data can be fit by models in which binding of each molecule of CheY** shifts the difference in free energy between CW and CCW states by a fixed amount. The shift increases linearly from approximately 0.3kT per molecule at 5 degrees C to approximately 0.9kT at 25 degrees C, where k is Boltzmann's constant and T is 289 Kelvin (= 16 degrees C). The entropy and enthalpy contributions to this shift are about -0. 031kT/ degrees C and 0.10kT, respectively.
大肠杆菌的行为是由鞭毛旋转马达在顺时针(CW)和逆时针(CCW)两种旋转状态之间的切换所控制的。切换的分子机制仍然未知,但响应调节因子CheY-P与马达组件FliM的结合会增强顺时针旋转。未磷酸化的双突变体CheY13DK106YW(CheY**)也能模拟这种效应。为了更多地了解切换过程,我们测量了在不同浓度的CheY和不同温度下,马达处于顺时针状态的时间比例(顺时针偏向)。根据顺时针偏向,我们计算了切换的标准自由能变化。在没有CheY的情况下,这种自由能变化是温度的线性函数(《生物物理学杂志》71:2227 - 2233)。在有CheY的情况下,它是非线性的。然而,数据可以用这样的模型来拟合,即每个CheY**分子的结合会使顺时针和逆时针状态之间的自由能差异移动一个固定量。这个移动量从5摄氏度时每分子约0.3kT线性增加到25摄氏度时约0.9kT,其中k是玻尔兹曼常数,T是289开尔文(=16摄氏度)。对这个移动量的熵和焓贡献分别约为-0.031kT/摄氏度和0.10kT。