Suppr超能文献

基于分形特征的胎儿心率序列分类

Classification of foetal heart rate sequences based on fractal features.

作者信息

Felgueiras C S, de Sá J P, Bernardes J, Gama S

机构信息

Instituto de Engenharia Biomédica, Porto, Portugal.

出版信息

Med Biol Eng Comput. 1998 Mar;36(2):197-201. doi: 10.1007/BF02510743.

Abstract

Visual inspection of foetal heart rate (FHR) sequences is an important means of foetal well-being evaluation. The application of fractal features for classifying physiologically relevant FHR sequence patterns is reported. The use of fractal features is motivated by the difficulties exhibited by traditional classification schemes to discriminate some classes of FHR sequence and by the recognition that this type of signal exhibits features on different scales of observation, just as fractal signals do. To characterise the signals by fractal features, two approaches are taken. The first modes the FHR sequences as temporal fractals. The second uses techniques from the chaos-theory field and aims to model the attractor based on FHR sequences. The fractal features determined by both approaches are used to design a Bayesian classification scheme. Classification results for three classes are presented; they are quite satisfactory and illustrate the importance of this type of methodology.

摘要

对胎儿心率(FHR)序列进行视觉检查是评估胎儿健康状况的重要手段。据报道,分形特征可用于对生理相关的FHR序列模式进行分类。传统分类方案在区分某些类别的FHR序列时存在困难,并且认识到这种类型的信号在不同观测尺度上呈现出特征,就像分形信号一样,因此激发了分形特征的使用。为了通过分形特征来表征信号,采用了两种方法。第一种方法将FHR序列建模为时间分形。第二种方法使用混沌理论领域的技术,旨在基于FHR序列对吸引子进行建模。两种方法确定的分形特征都用于设计贝叶斯分类方案。给出了三类的分类结果;它们相当令人满意,并说明了这种方法的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验