Cunningham B W, DiStefano A F, Kirjanov N A, Levine S E, Schon L C
Department of Orthopaedic Surgery, Union Memorial Hospital, Baltimore, Maryland, USA.
Am J Sports Med. 1998 Jul-Aug;26(4):555-61. doi: 10.1177/03635465980260041501.
Dancing en pointe requires the ballerina to stand on her toes, which are protected only by the pointe shoe toe box. This protection diminishes when the toe box loses its structural integrity. The objectives of this study were 1) to quantify the comparative structural static and fatigue properties of the pointe shoe toe box, and 2) to evaluate the preferred shoe characteristics as determined by a survey of local dancers. Five different pointe shoes (Capezio, Freed, Gaynor Minden, Leo's, and Grishko) were evaluated to quantify the static stiffness, static strength, and fatigue properties (cycles to failure) of the shoes. Under axial loading conditions, the Leo's shoe demonstrated the highest stiffness level, and the Freed shoe exhibited the least strength. Under vertical loading conditions, the Leo's and Freed shoes demonstrated the highest stiffness levels, and the Gaynor Minden and Freed shoes exhibited the highest strength. Fatigue testing highlighted the greatest differences among the five shoes, with the Gaynor Minden demonstrating the highest fatigue life. Dancers rated the top five shoe characteristics, in order of importance, as fit, comfort, box/platform shape, vamp shape, and durability and indicated that the "best" shoe is one that "feels right" and permits artistic maneuvers, not necessarily the strongest or most durable shoe.