Winkler J, Thal L J, Gage F H, Fisher L J
Department of Neurosciences, University of California San Diego, La Jolla 92093, USA.
J Mol Med (Berl). 1998 Jul;76(8):555-67. doi: 10.1007/s001090050250.
Alzheimer's disease is a devastating degenerative disorder of the central nervous system that results in gradual deterioration of cognitive function and severe alteration of personality. Degeneration of neurons in the nucleus basalis Meynert, the origin of the major cholinergic projections to the neocortex, occurs early in the course of the disease, and is correlated with the cognitive decline. This link between cholinergic dysfunction in the basal-cortical system and cognitive deficits has focused scientific efforts on developing tools to elucidate the neurobiological role of the cholinergic system in cognition and to develop therapeutic interventions in the disorder. An important step in understanding the mechanisms underlying cognitive dysfunction has been the development of in vivo rodent models that mimic some of the features of Alzheimer's disease. Acute excitotoxic or immunotoxic lesions of the nucleus basalis in rodents have revealed a role of the basal-cortical system in attention, learning and memory. More recent advances in developing mouse gene technology offer newer models to systematically examine the underlying neuropathological cascade leading to dysfunctions in mnemonic processing. Using in vivo rodent models, several cholinergic enhancement strategies have been tested and proven to be effective in alleviating lesion-induced cognitive deficits, including neuropharmacological approaches (acetylcholinesterase inhibitors), neurotrophic factor administration (nerve growth factor), and transplantation of cholinergic-enriched fetal grafts. Successful results have also been obtained using ex vivo gene transfer to deliver nerve growth factor or acetylcholine to compromised regions of the basal-cortical system. Gene therapy may be of particular interest for clinical applications, because this approach provides a method for topographically restricted and selective delivery of therapeutic genes and their products to afflicted areas of the brain. Advanced techniques in molecular biology (e.g., exogenous regulatable gene transfer) and newly developed tools of modern neuroscience (e.g., neural precursor cells) will be important contributions for deciphering the biological bases of neuronal degeneration and for refining therapeutic strategies for Alzheimer's disease.
阿尔茨海默病是一种毁灭性的中枢神经系统退行性疾病,会导致认知功能逐渐衰退和人格严重改变。迈内特基底核中的神经元发生退化,这里是向新皮质发出主要胆碱能投射的起源部位,在疾病进程早期就会出现,且与认知能力下降相关。基底 - 皮质系统中的胆碱能功能障碍与认知缺陷之间的这种联系,促使科学界致力于开发工具,以阐明胆碱能系统在认知中的神经生物学作用,并开发针对该疾病的治疗干预措施。理解认知功能障碍背后机制的一个重要步骤是开发模仿阿尔茨海默病某些特征的体内啮齿动物模型。啮齿动物中迈内特基底核的急性兴奋性毒性或免疫毒性损伤揭示了基底 - 皮质系统在注意力、学习和记忆中的作用。在小鼠基因技术开发方面的最新进展提供了更新的模型,可用于系统地研究导致记忆处理功能障碍的潜在神经病理级联反应。利用体内啮齿动物模型,已经测试了几种胆碱能增强策略,并证明它们在减轻损伤诱导的认知缺陷方面是有效的,包括神经药理学方法(乙酰胆碱酯酶抑制剂)、给予神经营养因子(神经生长因子)以及移植富含胆碱能的胎儿移植物。使用离体基因转移将神经生长因子或乙酰胆碱递送至基底 - 皮质系统的受损区域也取得了成功结果。基因治疗可能对临床应用特别有意义,因为这种方法提供了一种将治疗性基因及其产物在地形上受限且选择性地递送至脑患病区域的方法。分子生物学中的先进技术(例如外源性可调节基因转移)和现代神经科学新开发的工具(例如神经前体细胞)将为解读神经元退化的生物学基础以及完善阿尔茨海默病的治疗策略做出重要贡献。