Müller Wally H, Montijn Roy C, Humbel Bruno M, van Aelst Adriaan C, Boon Eline J M C, van der Krift Theo P, Boekhout Teun
Yeast Division of the Centraalbureau voor SchimmelculturesJulianalaan 67, 2628 BC DelftThe Netherlands.
Department of Molecular Cell Biology, EMSA, Utrecht UniversityPadualaan 8, 3584 CH UtrechtThe Netherlands.
Microbiology (Reading). 1998 Jul;144 ( Pt 7):1721-1730. doi: 10.1099/00221287-144-7-1721.
The septal pore cap (SPC) of Trichosporon sporotrichoides CBS 8245 is vesicular-tubular, connected with flat-tubular endoplasmic reticulum (ER), and stains densely with zinc/iodine/osmium tetroxide, as does the ER. The SPC of Schizophyllum commune CBS 340.81 is more complex, about 600 nm in diameter, with perforations of 80-120 nm diameter, and stains less densely with zinc/iodine/osmium tetroxide than the ER. In high-pressure frozen and freeze-substituted hyphae of T. sporotrichoides the ER is present parallel to the dolipore septa, and electron-dense material occurs opposite the septal pore channel; the SPC rarely showed smooth vesicular-tubular membranes, suggesting that this is an ephemeral function of the SPC. The SPC of S. commune has a smooth outer and inner membrane, which enclose a matrix with a palisade-like substructure. A thin layer of electron-dense material covers the inner surface of the SPC of S. commune, from which beaded filamentous structures connect the SPC and the pore-occluding material. These filamentous structures may maintain the intracellular position of the SPC and possibly play a role in plugging the septal pore channel. The septal pore swellings of T. sporotrichoides contain more 1,6-beta-glucan than the septum, and intracellular glucans are also present near the septal pore channel. This cytosolic 1,6-beta-glucan in T. sporotrichoides may serve as a matrix to keep the tubular membranous structures of the SPC together. In contrast, 1,6-beta-glucan is not observed in the SPC and in the pore-occluding material of S. commune, and hyphal septa of this species show less labelling of 1,6-beta-glucan than the septal swelling. The evolutionary transition from simple to more complex types of SPCs may have resulted in a requirement for different components to maintain the morphological integrity and cell biological function.
嗜皮毛孢子菌CBS 8245的隔膜孔帽(SPC)呈泡管状,与扁平管状内质网(ER)相连,并用锌/碘/四氧化锇染色时染色较深,内质网也是如此。裂褶菌CBS 340.81的SPC更复杂,直径约600 nm,有直径80 - 120 nm的穿孔,用锌/碘/四氧化锇染色时比内质网染色浅。在嗜皮毛孢子菌的高压冷冻和冷冻置换菌丝中,内质网与桶孔隔膜平行存在,电子致密物质出现在隔膜孔通道的对面;SPC很少显示出光滑的泡管状膜,这表明这是SPC的一个短暂功能。裂褶菌的SPC有光滑的外膜和内膜,它们包围着一个具有栅栏状亚结构的基质。一层薄的电子致密物质覆盖在裂褶菌SPC的内表面,从这里有串珠状丝状结构连接SPC和孔堵塞物质。这些丝状结构可能维持SPC在细胞内的位置,并可能在堵塞隔膜孔通道中起作用。嗜皮毛孢子菌的隔膜孔肿胀部位比隔膜含有更多的1,6-β-葡聚糖,隔膜孔通道附近也存在细胞内葡聚糖。嗜皮毛孢子菌中的这种胞质1,6-β-葡聚糖可能作为一种基质,将SPC的管状膜结构保持在一起。相比之下,在裂褶菌的SPC和孔堵塞物质中未观察到1,6-β-葡聚糖,该物种的菌丝隔膜显示出的1,6-β-葡聚糖标记比隔膜肿胀部位少。从简单类型到更复杂类型的SPC的进化转变可能导致需要不同的成分来维持形态完整性和细胞生物学功能。