Suppr超能文献

多元表征、设计与分析在分析方法优化中的应用。

Use of multivariate characterization, design and analysis in assay optimization.

作者信息

Ståhle L, Mian A, Borg N

机构信息

Karolinska Institute, Huddinge Hospital, Sweden.

出版信息

J Pharm Biomed Anal. 1995 Apr;13(4-5):369-76. doi: 10.1016/0731-7085(95)01327-h.

Abstract

A procedure is proposed for utilizing information from previous work on development of LC assays in order to facilitate the analysis of novel compounds related to those previously analysed. The procedure employs a multivariate method from the field of chemometrics, partial least squares analysis (PLS) to combine quantitative information on the chemical properties of a compound with a quantitative description of the column and the mobile phase and then to use this information to form a regression model for the retention time. A test of the procedure was made by using data on nucleoside analogues studied in our laboratory. Data obtained from chromatographic studies of seven compounds tested in a total of 28 combinations of columns and mobile phases (3-5 per compound) were used to calculate a PLS model. The model was then used to predict retention times of nine other substances and the results were compared with experimental data. The predictions were (115 +/- 82%) (95% confidence interval) of the experimentally observed retention times. The results are encouraging and the method will be subject to further and extended investigations.

摘要

本文提出了一种利用先前液相色谱分析方法开发中的信息的程序,以便于分析与先前分析的化合物相关的新型化合物。该程序采用化学计量学领域的多元方法——偏最小二乘分析(PLS),将化合物化学性质的定量信息与色谱柱和流动相的定量描述相结合,然后利用这些信息形成保留时间的回归模型。通过使用我们实验室研究的核苷类似物的数据对该程序进行了测试。从总共28种色谱柱和流动相组合(每种化合物3 - 5种)中测试的7种化合物的色谱研究中获得的数据用于计算PLS模型。然后使用该模型预测其他9种物质的保留时间,并将结果与实验数据进行比较。预测值为实验观察到的保留时间的(115 +/- 82%)(95%置信区间)。结果令人鼓舞,该方法将接受进一步的深入研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验