Suppr超能文献

ADP葡萄糖焦磷酸化酶:基础科学及其在生物技术中的应用

ADPglucose pyrophosphorylase: basic science and applications in biotechnology.

作者信息

Preiss J

机构信息

Department of Biochemistry, Michigan State University, East Lansing 48824, USA.

出版信息

Biotechnol Annu Rev. 1996;2:259-79. doi: 10.1016/s1387-2656(08)70013-9.

Abstract

The enzymatic reactions of bacterial glycogen and plant starch synthesis are similar and some of the properties of the biosynthetic enzymes are compared. Regulation occurs at the synthesis of ADPglucose and in almost all cases, ADPglucose pyrophosphorylase, is allosterically activated about 10- to over 40-fold by glycolytic intermediates and inhibited by AMP, ADP or Pi. The activator specificity of the ADPglucose pyrophosphorylase varies with respect to the source of enzyme and can be correlated to the major assimilation pathway occurring in the organism. For example, ADPglucose pyrophosphorylases from plants and other oxygenic photosynthetic organisms are activated by 3-phosphoglycerate. Organisms using glycolysis for carbon assimilation have ADPglucose pyrophosphorylases with fructose-1,6-bis-phosphate as the major activator. Chemical modification and site-directed mutagenesis studies that have determined the activator binding sites for some enzymes are described. The structural genes of Escherichia coli ADPglucose pyrophosphorylase allosteric mutants which no longer require activator for activity have been isolated. Transformation of plant systems with an allosteric bacterial mutant gene (but not with the wild-type gene) increases their starch content. Transformed potato tubers can have 25-60% more starch than the normal tuber indicating the importance of allosteric regulation of ADPglucose synthesis. The increase of a normal plant product by transformation of the plant with a gene encoding the rate-limiting enzyme in starch synthesis is an important biotechnological advance and suggests the possibilities of changing starch composition (extent of branching and chain sizes) via transformation with the starch synthase and branching enzyme genes.

摘要

细菌糖原和植物淀粉合成的酶促反应相似,本文对生物合成酶的一些特性进行了比较。调节作用发生在ADP葡萄糖的合成过程中,几乎在所有情况下,ADP葡萄糖焦磷酸化酶都被糖酵解中间产物变构激活10至40倍以上,并受到AMP、ADP或Pi的抑制。ADP葡萄糖焦磷酸化酶的激活剂特异性因酶的来源而异,并且与生物体中发生的主要同化途径相关。例如,来自植物和其他产氧光合生物的ADP葡萄糖焦磷酸化酶被3-磷酸甘油酸激活。利用糖酵解进行碳同化的生物体,其ADP葡萄糖焦磷酸化酶以果糖-1,6-二磷酸作为主要激活剂。本文还描述了通过化学修饰和定点诱变研究确定某些酶的激活剂结合位点的情况。已分离出大肠杆菌ADP葡萄糖焦磷酸化酶变构突变体的结构基因,这些突变体不再需要激活剂来发挥活性。用变构细菌突变基因(而非野生型基因)转化植物系统可增加其淀粉含量。转化后的马铃薯块茎淀粉含量可比正常块茎高25%至60%,这表明ADP葡萄糖合成的变构调节具有重要意义。通过用编码淀粉合成限速酶的基因转化植物来增加正常植物产物的含量,是一项重要的生物技术进展,这也暗示了通过用淀粉合酶和分支酶基因进行转化来改变淀粉组成(分支程度和链大小)的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验