Suppr超能文献

通过增压脉冲揭示青蛙骨骼肌中Ca2+释放的快速电压门控

Fast voltage gating of Ca2+ release in frog skeletal muscle revealed by supercharging pulses.

作者信息

Kim A M, Vergara J L

机构信息

Department of Physiology, University of California at Los Angeles, 10833 LeConte Avenue 53-263 CHS, Los Angeles, CA 90095-1751, USA.

出版信息

J Physiol. 1998 Sep 1;511 ( Pt 2)(Pt 2):509-18. doi: 10.1111/j.1469-7793.1998.509bh.x.

Abstract
  1. In single frog skeletal muscle fibres, we utilized supercharging voltage clamp command pulses to boost the rate of depolarization in the transverse tubular system (T-system) such that 95 % of steady-state potential is achieved in < 2 ms (as indicated by fluorescent potentiometric dye signals detected from a global illumination region). Signals detected near the edge of muscle fibres indicate that peripheral regions of the T-system are not significantly overcompensated under these conditions. 2. We explored the impact of accelerating T-system depolarization on voltage-dependent events of excitation-contraction (E-C) coupling by measuring charge movement currents (CMCs) and Ca2+ fluorescence transients in response to both supercharging and conventional step pulses. 3. When compared with CMCs elicited by step pulses, supercharging CMCs are larger, and their kinetics more closely resemble those of gating current records reported for ionic channels. Furthermore, they decay bi-exponentially (tau fast range, 1.3-1.8 ms; tau slow range, 7.3-11.9 ms), whereas step CMCs fall with a single exponential time course (tau range, 12.5-26.7 ms). 4. Similarly, supercharging produces a distinct acceleration in Ca2+ release transients, which show little evidence of the voltage-dependent onset latencies previously encountered using step pulses. 5. The use of this novel methodology in skeletal muscle unveils a previously undetected component of charge movement, the rapid, voltage-dependent recruitment of which may provide the basis for understanding the fast gating of physiological E-C coupling.
摘要
  1. 在单个青蛙骨骼肌纤维中,我们利用增压电压钳指令脉冲来提高横管系统(T 系统)中的去极化速率,使得在不到 2 毫秒的时间内达到稳态电位的 95%(如从全局照明区域检测到的荧光电位染料信号所示)。在肌肉纤维边缘附近检测到的信号表明,在这些条件下,T 系统的周边区域没有明显的过度补偿。2. 我们通过测量电荷移动电流(CMC)和响应增压及传统阶跃脉冲的 Ca2+荧光瞬变,探索了加速 T 系统去极化对兴奋-收缩(E-C)偶联的电压依赖性事件的影响。3. 与阶跃脉冲引发的 CMC 相比,增压 CMC 更大,其动力学更类似于离子通道报道的门控电流记录。此外,它们呈双指数衰减(快速时间常数范围为 1.3 - 1.8 毫秒;慢速时间常数范围为 7.3 - 11.9 毫秒),而阶跃 CMC 以单指数时间进程下降(时间常数范围为 12.5 - 26.7 毫秒)。4. 同样,增压在 Ca2+释放瞬变中产生明显的加速,几乎没有显示出使用阶跃脉冲时先前遇到的电压依赖性起始延迟的证据。5. 在骨骼肌中使用这种新方法揭示了电荷移动中一个以前未被检测到的成分,其快速的、电压依赖性募集可能为理解生理 E-C 偶联的快速门控提供基础。

相似文献

引用本文的文献

本文引用的文献

5
Voltage-dependent gating of ionic channels.离子通道的电压依赖性门控。
Annu Rev Biophys Biomol Struct. 1994;23:819-46. doi: 10.1146/annurev.bb.23.060194.004131.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验